Abstract:
A frequency reference device that includes a frequency reference generation unit to generate a frequency reference signal based on an absorption line of a gas.
Abstract:
A semiconductor device includes an integrated trench capacitor in a substrate, with a field oxide layer on the substrate. The trench capacitor includes trenches extending into semiconductor material of the substrate, and a capacitor dielectric in the trenches on the semiconductor material. The trench capacitor further includes an electrically conductive trench-fill material on the capacitor dielectric. A portion of the capacitor dielectric extends into the field oxide layer, between a first segment of the field oxide layer over the trench-fill material and a second segment of the field oxide layer over the semiconductor material. The integrated trench capacitor has a trench contact to the trench-fill material in each of the trenches, and substrate contacts to the semiconductor material around the trenches, with no substrate contacts between the trenches.
Abstract:
A semiconductor device includes an integrated trench capacitor in a substrate, with a field oxide layer on the substrate. The trench capacitor includes trenches extending into semiconductor material of the substrate, and a capacitor dielectric in the trenches on the semiconductor material. The trench capacitor further includes an electrically conductive trench-fill material on the capacitor dielectric. A portion of the capacitor dielectric extends into the field oxide layer, between a first segment of the field oxide layer over the trench-fill material and a second segment of the field oxide layer over the semiconductor material. The integrated trench capacitor has a trench contact to the trench-fill material in each of the trenches, and substrate contacts to the semiconductor material around the trenches, with no substrate contacts between the trenches.
Abstract:
A semiconductor device includes an integrated trench capacitor in a substrate, with a field oxide layer on the substrate. The trench capacitor includes trenches extending into semiconductor material of the substrate, and a capacitor dielectric in the trenches on the semiconductor material. The trench capacitor further includes an electrically conductive trench-fill material on the capacitor dielectric. A portion of the capacitor dielectric extends into the field oxide layer, between a first segment of the field oxide layer over the trench-fill material and a second segment of the field oxide layer over the semiconductor material. The integrated trench capacitor has a trench contact to the trench-fill material in each of the trenches, and substrate contacts to the semiconductor material around the trenches, with no substrate contacts between the trenches.
Abstract:
A method forming packaged semiconductor devices includes providing a completed semiconductor package having a die with bond pads coupled to package pins. Sensor precursors including an ink and a liquid carrier are additively printed directly on the die or package to provide precursors for electrodes and a sensing material between the sensor electrodes. Sintering or curing removes the liquid carrier such that an ink residue remains to provide the sensor electrodes and sensing material. The sensor electrodes electrically coupled to the pins or bond pads or the die includes a wireless coupling structure coupled to the bond pads and the method includes additively printing an ink then sintering or curing to form a complementary wireless coupling structure on the completed semiconductor package coupled to the sensor electrodes so that sensing signals sensed by the sensor are wirelessly transmitted to the bond pads after being received by the wireless coupling structure.
Abstract:
A semiconductor device includes an integrated trench capacitor in a substrate, with a field oxide layer on the substrate. The trench capacitor includes trenches extending into semiconductor material of the substrate, and a capacitor dielectric in the trenches on the semiconductor material. The trench capacitor further includes an electrically conductive trench-fill material on the capacitor dielectric. A portion of the capacitor dielectric extends into the field oxide layer, between a first segment of the field oxide layer over the trench-fill material and a second segment of the field oxide layer over the semiconductor material. The integrated trench capacitor has a trench contact to the trench-fill material in each of the trenches, and substrate contacts to the semiconductor material around the trenches, with no substrate contacts between the trenches.
Abstract:
A pressure transducer includes a cavity, a first dipolar molecule disposed within the cavity, and a second dipolar molecule disposed within the cavity. The first dipolar molecule exhibits a quantum rotational state transition at a fixed frequency with respect to cavity pressure. The second dipolar molecule exhibits a quantum rotation state transition at a frequency that varies with cavity pressure.