METHOD FOR IMPROVING TRANSISTOR PERFORMANCE
    4.
    发明申请

    公开(公告)号:US20200035833A1

    公开(公告)日:2020-01-30

    申请号:US16589951

    申请日:2019-10-01

    Abstract: A method to improve transistor performance uses a wafer (100) of single-crystalline semiconductor with a first zone (102) of field effect transistors (FETs) and circuitry at the wafer surface, and an infrared (IR) laser with a lens for focusing the IR light to a second depth (112) farther from the wafer surface than the first depth of the first zone. The focused laser beam is moved parallel to the surface across the wafer to cause local multi-photon absorption at the second depth for transforming the single-crystalline semiconductor into a second zone (111) of polycrystalline semiconductor with high density of dislocations. The second zone has a height and lateral extensions, and permanently stresses the single-crystalline bulk semiconductor; the stress increases the majority carrier mobility in the channel of the FETs, improving the transistor performance.

    LDMOS NANOSHEET TRANSISTOR
    6.
    发明申请

    公开(公告)号:US20240413239A1

    公开(公告)日:2024-12-12

    申请号:US18525638

    申请日:2023-11-30

    Abstract: Disclosed examples include microelectronic devices, e.g. Integrated circuits. One example includes a microelectronic device including a nanosheet lateral drain extended metal oxide semiconductor (LDMOS) transistor with source and drain regions having a first conductivity type extending into a semiconductor substrate having an opposite second conductivity type. A superlattice of alternating layers of nanosheets of a channel region and layers of gate conductor are separated by a gate dielectric, the superlattice extending between the source region and the drain region. A drain drift region of the first conductivity type extends under the drain region and a body region of the second type extends around the source region.

    Standoff connector for electrical devices

    公开(公告)号:US10887993B2

    公开(公告)日:2021-01-05

    申请号:US14985760

    申请日:2015-12-31

    Inventor: Steven Kummerl

    Abstract: An apparatus includes an electrical device having a surface. The electrical device includes a first surface conductor spaced apart from a second surface conductor on the surface to provide circuit contacts to the device. A first standoff connector is bonded to the first surface conductor. The first standoff connector includes a leg having a proximal end bonded to the first surface conductor. The leg of the first standoff connector extends outwardly from the first surface conductor to a bend that is spaced apart from the surface of the electrical device. A second standoff connector is bonded to the second surface conductor. The second standoff connector includes a leg having a proximal end bonded to the second surface conductor. The leg of the second standoff connector extends outwardly from the second surface conductor to a bend that is spaced apart from the surface of the electrical device.

    Integrated circuit chip with a vertical connector

    公开(公告)号:US10804185B2

    公开(公告)日:2020-10-13

    申请号:US14985947

    申请日:2015-12-31

    Abstract: An integrated circuit (IC) chip can include a die with an interconnect conductively coupled to a leadframe, wherein the leadframe forms a portion of a given surface of the IC chip. The IC chip can also include an encapsulating material molded over the die and the leadframe. The encapsulating material can form another surface of the IC chip. The other surface of the IC chip opposes the given surface of the IC chip. The IC chip can further include a vertical wire extending through the encapsulating material in a direction that is substantially perpendicular to the given surface of the IC chip and the vertical wire protruding through the other surface of the IC chip to form a vertical connector for the IC chip. The vertical connector can be coupled to the interconnect on the die.

    Method for improving transistor performance

    公开(公告)号:US10431684B2

    公开(公告)日:2019-10-01

    申请号:US15136097

    申请日:2016-04-22

    Abstract: A method to improve transistor performance uses a wafer (100) of single-crystalline semiconductor with a first zone (102) of field effect transistors (FETs) and circuitry at the wafer surface, and an infrared (IR) laser with a lens for focusing the IR light to a second depth (112) farther from the wafer surface than the first depth of the first zone. The focused laser beam is moved parallel to the surface across the wafer to cause local multi-photon absorption at the second depth for transforming the single-crystalline semiconductor into a second zone (111) of polycrystalline semiconductor with high density of dislocations. The second zone has a height and lateral extensions, and permanently stresses the single-crystalline bulk semiconductor; the stress increases the majority carrier mobility in the channel of the FETs, improving the transistor performance.

Patent Agency Ranking