-
公开(公告)号:US20210370271A1
公开(公告)日:2021-12-02
申请号:US17304004
申请日:2021-06-11
发明人: Mauricio Terrones , Yu Lei , He Liu , Kazunori Fujisawa , Ann Laura Elias Arriaga , Tianyi Zhang , Eduardo Cruz-Silva , Moronobu Endo , Xiaoxing Wang
IPC分类号: B01J21/02 , C01B21/064 , B01J23/50 , B01J37/00 , B01J23/89 , B01J35/10 , B01J35/02 , B01J37/04 , B01J37/06 , C25B11/097 , C25B1/02
摘要: A group of reductive 2D materials (R2D) with extended reactive vacancies and a method for making the R2D with extended reactive vacancies are provided, especially the example of the reductive boron nitride (RBN). To create defects such as vacancies, boron nitride (BN) powders are milled at cryogenic temperatures. Vacancies are produced by milling, and the vacancies can be used to reduce various metal nanostructures on RBN. Due to the thermal stability of the RBN and the enhanced catalytic performance of metal nanostructures, RBN-metals can be used for different catalysts, including electrochemical catalysts and high temperature catalysts.
-
公开(公告)号:US09284193B2
公开(公告)日:2016-03-15
申请号:US14519937
申请日:2014-10-21
发明人: Rodolfo Cruz-Silva , Aaron Morelos , Mauricio Terrones , Ana Laura Elias , Nestor Perea-Lopez , Morinobu Endo
CPC分类号: C01B31/043 , B01D39/2065 , B01D2239/065 , B01D2239/1233 , C01B32/194 , C01B32/23 , C08K3/04 , C08K3/18 , C09D5/24 , C09D7/70 , D01D5/426 , D01F9/12 , D01F11/10 , D01F11/14 , H01B1/04 , Y10T428/2918 , Y10T428/31678 , Y10T428/31993 , Y10T442/277 , Y10T442/2861 , Y10T442/2984
摘要: We report a method of preparation of highly elastic graphene oxide films, and their transformation into graphene oxide fibers and electrically conductive graphene fibers by spinning. Methods typically include: 1) oxidation of graphite to graphene oxide, 2) preparation of graphene oxide slurry with high solid contents and residues of sulfuric acid impurities. 3) preparation of large area films by bar-coating or dropcasting the graphene oxide dispersion and drying at low temperature. 4) spinning the graphene oxide film into a fiber, and 5) thermal or chemical reduction of the graphene oxide fiber into an electrically conductive graphene fiber. The resulting films and fiber have excellent mechanical properties, improved morphology as compared with current graphene oxide fibers, high electrical conductivity upon thermal reduction, and improved field emission properties.
摘要翻译: 我们报告了一种制备高弹性石墨烯氧化物膜的方法,并且通过旋转将其转化为氧化石墨烯氧化纤维和导电石墨烯纤维。 方法通常包括:1)将石墨氧化成石墨烯氧化物,2)制备具有高固体含量和硫酸杂质残留物的石墨烯氧化物浆料。 3)通过棒状涂布或滴加石墨烯氧化物分散体并在低温下干燥来制备大面积膜。 4)将石墨烯氧化膜旋转成纤维,和5)将石墨烯氧化物纤维热或化学还原成导电石墨烯纤维。 所得到的膜和纤维具有优异的机械性能,与目前的氧化烯氧化物纤维相比具有改进的形态,热还原时的高导电性和改善的场致发射性能。
-
公开(公告)号:US11958038B2
公开(公告)日:2024-04-16
申请号:US17304004
申请日:2021-06-11
发明人: Mauricio Terrones , Yu Lei , He Liu , Kazunori Fujisawa , Ana Laura Elias Arriaga , Tianyi Zhang , Rodolfo Cruz-Silva , Morinobu Endo , Xiaoxing Wang , Cynthia Guerrero-Bermea
IPC分类号: C01B21/064 , B01J21/02 , B01J23/50 , B01J23/89 , B01J35/02 , B01J35/10 , B01J37/00 , B01J37/04 , B01J37/06 , C25B1/02 , C25B11/097
CPC分类号: B01J21/02 , B01J23/50 , B01J23/8926 , B01J35/026 , B01J35/1014 , B01J37/0063 , B01J37/009 , B01J37/04 , B01J37/06 , C01B21/0648 , C25B1/02 , C25B11/097 , C01P2002/72 , C01P2002/82 , C01P2002/84 , C01P2004/04 , C01P2006/37 , C01P2006/40
摘要: A group of reductive 2D materials (R2D) with extended reactive vacancies and a method for making the R2D with extended reactive vacancies are provided, especially the example of the reductive boron nitride (RBN). To create defects such as vacancies, boron nitride (BN) powders are milled at cryogenic temperatures. Vacancies are produced by milling, and the vacancies can be used to reduce various metal nanostructures on RBN. Due to the thermal stability of the RBN and the enhanced catalytic performance of metal nanostructures, RBN-metals can be used for different catalysts, including electrochemical catalysts and high temperature catalysts.
-
公开(公告)号:US20150111449A1
公开(公告)日:2015-04-23
申请号:US14519937
申请日:2014-10-21
发明人: Rodolfo Cruz-Silva , Aaron Morelos , Mauricio Terrones , Ana Laura Elias , Nestor Perea-Lopez , Morinobu Endo
CPC分类号: C01B31/043 , B01D39/2065 , B01D2239/065 , B01D2239/1233 , C01B32/194 , C01B32/23 , C08K3/04 , C08K3/18 , C09D5/24 , C09D7/70 , D01D5/426 , D01F9/12 , D01F11/10 , D01F11/14 , H01B1/04 , Y10T428/2918 , Y10T428/31678 , Y10T428/31993 , Y10T442/277 , Y10T442/2861 , Y10T442/2984
摘要: We report a method of preparation of highly elastic graphene oxide films, and their transformation into graphene oxide fibers and electrically conductive graphene fibers by spinning. Methods typically include: 1) oxidation of graphite to graphene oxide, 2) preparation of graphene oxide slurry with high solid contents and residues of sulfuric acid impurities. 3) preparation of large area films by bar-coating or dropcasting the graphene oxide dispersion and drying at low temperature. 4) spinning the graphene oxide film into a fiber, and 5) thermal or chemical reduction of the graphene oxide fiber into an electrically conductive graphene fiber. The resulting films and fiber have excellent mechanical properties, improved morphology as compared with current graphene oxide fibers, high electrical conductivity upon thermal reduction, and improved field emission properties.
摘要翻译: 我们报告了一种制备高弹性石墨烯氧化物膜的方法,并且通过旋转将其转化为氧化石墨烯氧化纤维和导电石墨烯纤维。 方法通常包括:1)将石墨氧化成石墨烯氧化物,2)制备具有高固体含量和硫酸杂质残留物的石墨烯氧化物浆料。 3)通过棒状涂布或滴加石墨烯氧化物分散体并在低温下干燥来制备大面积膜。 4)将石墨烯氧化膜旋转成纤维,和5)将石墨烯氧化物纤维热或化学还原成导电石墨烯纤维。 所得到的膜和纤维具有优异的机械性能,与目前的氧化烯氧化物纤维相比具有改进的形态,热还原时的高导电性和改善的场致发射性能。
-
公开(公告)号:US20240343584A1
公开(公告)日:2024-10-17
申请号:US18701074
申请日:2022-11-02
发明人: George Bepete , Sikai Wu , Yu Lei , Nestor Perea Lopez , Vincent Henry Crespi , Mauricio Terrones
IPC分类号: C01B32/18
CPC分类号: C01B32/18 , C01P2002/72 , C01P2002/82 , C01P2002/84 , C01P2002/85 , C01P2002/88 , C01P2004/16 , C01P2006/22 , C01P2006/40 , C01P2006/60
摘要: Embodiments relate to organic and aqueous dispersions of exfoliated bundles and individualized carbon nanothreads, and a method for making the dispersions. Embodiments involve reducing carbon nanothread crystals by an alkali metal or a mixture of alkali metals to form a carbon nanothread alkali metal compound. The carbon nanothread alkali metal compounds can be spontaneously soluble in polar aprotic organic solvents to form stable carbon nanothread dispersions. The dispersions and methods of making the same can be used for preparing carbon nanothread films for electronic devices, electrocatalytic electrodes, sensing devices and carbon nanothread/polymer nanocomposites.
-
公开(公告)号:US09988313B2
公开(公告)日:2018-06-05
申请号:US14429546
申请日:2013-09-19
发明人: Pilar Miranzo , Carmen Ocal , Maria Isabel Osendi , Manuel Belmonte , Cristina Ramirez , Benito Roman-Manso , Humberto R. Gutierrez , Mauricio Terrones
IPC分类号: H01B1/04 , C04B35/00 , C04B35/573 , B82Y30/00 , C04B35/575 , C04B35/626 , C04B35/645 , C04B35/64 , H01B1/18
CPC分类号: C04B35/573 , B82Y30/00 , C04B35/575 , C04B35/6261 , C04B35/64 , C04B35/645 , C04B2235/3217 , C04B2235/3224 , C04B2235/3225 , C04B2235/3227 , C04B2235/3418 , C04B2235/383 , C04B2235/3834 , C04B2235/422 , C04B2235/425 , C04B2235/443 , C04B2235/5436 , C04B2235/5454 , C04B2235/6567 , C04B2235/6581 , C04B2235/666 , C04B2235/78 , H01B1/04 , H01B1/18
摘要: We provide a method for the in situ development of graphene containing silicon carbide (SiC) matrix ceramic composites, and more particularly to the in situ graphene growth within the bulk ceramic through a single-step approach during SiC ceramics densification using an electric current activated/assisted sintering (ECAS) technique. This approach allows processing dense, robust, highly electrical conducting and well dispersed nanocomposites having a percolated graphene network, eliminating the handling of potentially hazardous nanostructures. Graphene/SiC components could be used in technological applications under strong demanding conditions where good electrical, thermal, mechanical and/or tribological properties are required, such as micro and nanoelectromechanical systems (MEMS and NEMS), sensors, actuators, heat exchangers, breaks, components for engines, armors, cutting tools, microturbines or microrotors.
-
公开(公告)号:US20180040704A1
公开(公告)日:2018-02-08
申请号:US15724612
申请日:2017-10-04
IPC分类号: H01L29/45 , H01L29/417 , H01L21/285
CPC分类号: H01L29/45 , H01L21/02485 , H01L21/02499 , H01L21/02507 , H01L21/02568 , H01L21/28556 , H01L21/768 , H01L29/24 , H01L29/417
摘要: Embodiments are presented herein that provide a TMD system wherein the first layered material is made of heterobilayers or multilayers with semiconducting direct band gaps. The first layered material may be made of multiple layers of different TMD with different stackings, exhibiting smaller direct and indirect band gaps smaller than monolayer systems of TMD.
-
公开(公告)号:US11022529B2
公开(公告)日:2021-06-01
申请号:US16784507
申请日:2020-02-07
发明人: Siyang Zheng , Mauricio Terrones , Yin-Ting Yeh , Yi Tang , Huaguang Lu , Nestor Perea Lopez , Yiqiu Xia
IPC分类号: G01N1/40 , B01L3/00 , G01N33/543 , G01N33/552 , G01N33/569 , B82Y30/00
摘要: The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
-
9.
公开(公告)号:US20150246851A1
公开(公告)日:2015-09-03
申请号:US14429546
申请日:2013-09-19
发明人: Pilar Miranzo , Carmen Ocal , Maria Isabel Osendi , Manuel Belmonte , Cristina Ramirez , Benito Roman-Manso , Humberto R. Gutierrez , Mauricio Terrones
IPC分类号: C04B35/573 , C04B35/64 , H01B1/18
CPC分类号: C04B35/573 , B82Y30/00 , C04B35/575 , C04B35/6261 , C04B35/64 , C04B35/645 , C04B2235/3217 , C04B2235/3224 , C04B2235/3225 , C04B2235/3227 , C04B2235/3418 , C04B2235/383 , C04B2235/3834 , C04B2235/422 , C04B2235/425 , C04B2235/443 , C04B2235/5436 , C04B2235/5454 , C04B2235/6567 , C04B2235/6581 , C04B2235/666 , C04B2235/78 , H01B1/04 , H01B1/18
摘要: We provide a method for the in situ development of graphene containing silicon carbide (SiC) matrix ceramic composites, and more particularly to the in situ graphene growth within the bulk ceramic through a single-step approach during SiC ceramics densification using an electric current activated/assisted sintering (ECAS) technique. This approach allows processing dense, robust, highly electrical conducting and well dispersed nanocomposites having a percolated graphene network, eliminating the handling of potentially hazardous nanostructures. Graphene/SiC components could be used in technological applications under strong demanding conditions where good electrical, thermal, mechanical and/or tribological properties are required, such as micro and nanoelectromechanical systems (MEMS and NEMS), sensors, actuators, heat exchangers, breaks, components for engines, armours, cutting tools, microturbines or microrotors.
摘要翻译: 我们提供了一种用于原位开发包含碳化硅(SiC)基质陶瓷复合材料的石墨烯的方法,更具体地说,涉及在SiC陶瓷致密化期间通过单步法在体陶瓷内的原位石墨烯生长中使用电流激活/ 辅助烧结(ECAS)技术。 这种方法可以处理具有渗透石墨烯网络的致密,坚固,高导电性和良好分散的纳米复合材料,从而消除潜在危险的纳米结构的处理。 石墨烯/ SiC组分可用于需要良好的电,热,机械和/或摩擦学性能的强要求条件下的技术应用,如微和纳机电系统(MEMS和NEMS),传感器,致动器,换热器,断路器, 发动机,铠装,切削工具,微型涡轮机或微型电动机组件。
-
公开(公告)号:US11739164B2
公开(公告)日:2023-08-29
申请号:US16463158
申请日:2017-12-14
发明人: Melik Demirel , Mert Vural , Mauricio Terrones , Yu Lei , Ibrahim Tarik Ozbolat
CPC分类号: C07K17/14 , B41M5/0011 , C07K1/042 , B82Y15/00 , B82Y40/00 , Y10S977/705 , Y10S977/712 , Y10S977/725 , Y10S977/727 , Y10S977/828
摘要: Provided are compositions that include at least one two-dimensional layer of an inorganic compound and at least one layer of an organic compound in the form of one or more polypeptides. Methods of making and using the materials are provided. The organic layer contains one or more polypeptides, each of which have alternating repeats of crystallite-forming subsequences and amorphous subsequences. The crystallite-forming subsequences form crystallites comprising stacks of one or more beta-sheets. The amorphous subsequences form a network of hydrogen bonds. A method includes i) combining one or more polypeptides with an inorganic material and an organic solvent, and ii) depositing one or more polypeptides, the inorganic material and the organic solvent onto a substrate. These steps can be repeated to provide a composite material that is a multilayer composite material. The composite materials can be used in a wide array of textile, electronic, semi-conducting, and other applications.
-
-
-
-
-
-
-
-
-