摘要:
To provide a concentration measuring method with which the concentration of a predetermined chemical component can be accurately, quickly, and nondestructively measured down to a concentration range of an extremely small amount with a simple means, and to provide a concentration measuring method with which the concentration of a chemical component in an object to be measured can be accurately and quickly measured down to a concentration range of a nano-order extremely small amount in real time, the method having universality, i.e., the ability to be embodied in various forms and modes. Light having a first wavelength and light having a second wavelength, which have different light absorptances with respect to an object to be measured, are each radiated onto the object to be measured using a time-sharing method; the light having the first wavelength and the light having the second wavelength, optically passing through the object to be measured as a result of the irradiation with the light having the first and second wavelengths, are received with a common light receiving sensor; a differential signal between a signal related to the light having the first wavelength and a signal related to the light having the second wavelength to be output from the light receiving sensor according to the received light is formed; and the concentration of a chemical component in the object to be measured is derived on the basis of the differential signal.
摘要:
Provided is a photodiode having a high-concentration layer on its surface, in which the high-concentration layer is formed so that the thickness of a non-depleted region is larger than the roughness of an interface between silicon and an insulation film layer, and is smaller than a penetration depth of ultraviolet light.
摘要:
A logical gate circuit (5) and four stages of flip flips (4a-4d) are assigned to each pixel (1). A controller (7) inputs four phase identification signals into the logical gate circuit (5) and also inputs a start signal STR into a shift register (4) synchronously with the four mutually different phases defined by the phase identification signals. During one round of scanning all the pixels (1) for a readout control, if an enable signal ENBL is set to “0” while an output of a phase identification circuit (110) is “1”, a charge accumulation time at the pixel (1) concerned becomes equal to a readout period T. If the enable signal ENBL is set to “1” while the output of the phase identification circuit (110) is “1”, electric charges accumulated in a photodiode (11) until that point are entirely discarded, so that the charge accumulation time becomes shorter than the readout period T. Thus, the charge accumulation time at each pixel (1) can be controlled to ensure an adequate SN ratio while avoiding signal saturation at some pixels even if the light source has a bright line at a specific wavelength.
摘要:
Reset noise in pixels is removed. A solid-state imaging device includes pixels arranged in row and column directions, in which each of the pixels includes a charge-voltage conversion terminal for voltage-converting signal charges transferred from a photoelectric conversion element by a transfer means, and a first reset means for resetting a voltage at the charge-voltage conversion terminal; signal lines, each of which is connected to the pixels in each column; a scanning means for selecting one row among others; and constant current circuit elements for supplying constant current to the signal lines. In the device, within each selected row, each reset voltage at each charge-voltage conversion terminal and a converted voltage from transferred signal charges are read out to and stored in each signal line supplied with constant current by each constant current circuit element, and then output.
摘要:
Provided is a photodiode having a high-concentration layer on its surface, in which the high-concentration layer is formed so that the thickness of a non-depleted region is larger than the roughness of an interface between silicon and an insulator layer, and is smaller than a penetration depth of ultraviolet light.
摘要:
A light-receiving device that achieves both high saturation performance and high sensitivity performance includes a light-receiving pixel including a light-receiving element, a first capacitive element that accumulates a photoelectric charge produced by light received by the light-receiving element, a second capacitive element that accumulates a transferred portion of an amount of the photoelectric charge accumulated in the capacitive element, a switch means for turning on and off a photoelectric charge transfer operation from the capacitive element to the capacitive element, a resetting switch means for resetting the capacitive element and the capacitive element, a pixel selecting switch means, and a source follower switch means. An effective saturation capacity of the capacitive element is 10 to 5,000 times an effective saturation capacity of the capacitive element.
摘要:
To provide a solid-state light-receiving device for ultraviolet light which can measure the amount of irradiation with ultraviolet light harmful to the human body using a simplified structure and properly and accurately, which can be readily integrated with a sensor of a peripheral circuit, which is small, light-weight, and low-cost, and which is suitable for mobile or wearable purposes. One solution is a solid-state light-receiving device for ultraviolet light which is provided with a first photodiode (1), a second photodiode (2), and a differential circuit which receives respective signals based on outputs from these photodiodes, wherein a position of the maximum concentration of a semiconductor impurity is provided in each of the photodiodes (1,2) and in a semiconductor layer region formed on each photodiode, and an optically transparent layer having a different wavelength selectivity is provided on a light-receiving surface of each photodiode.
摘要:
One problem addressed by the present invention is to provide an optical sensor, a solid-state imaging device, and methods for reading the signals therefrom, which contribute greatly to the development of industry and the realization of a safer and more secure society. One solution according to the present invention is an optical sensor having a light-receiving element, storage capacitors that store a charge, and a transfer switch for transferring to the storage capacitors a charge generated by light input to the light-receiving element, wherein the storage capacitors are a floating diffusion capacitor and a lateral overflow integration capacitor, and the transfer switch is a non-LDD/MOS transistor, that is, a non-LDD/MOS transistor for which the impurity concentration of the drain region is reduced by 50%.
摘要:
To provide a concentration measuring method with which the concentration of a predetermined chemical component can be accurately, quickly, and nondestructively measured down to a concentration range of an extremely small amount with a simple means, and to provide a concentration measuring method with which the concentration of a chemical component in an object to be measured can be accurately and quickly measured down to a concentration range of a nano-order extremely small amount in real time, the method having universality, i.e., the ability to be embodied in various forms and modes. Light having a first wavelength and light having a second wavelength, which have different light absorptances with respect to an object to be measured, are each radiated onto the object to be measured using a time-sharing method; the light having the first wavelength and the light having the second wavelength, optically passing through the object to be measured as a result of the irradiation with the light having the first and second wavelengths, are received with a common light receiving sensor; a differential signal between a signal related to the light having the first wavelength and a signal related to the light having the second wavelength to be output from the light receiving sensor according to the received light is formed; and the concentration of a chemical component in the object to be measured is derived on the basis of the differential signal.
摘要:
A capacitive sensor includes a sensing electrode, a first electrode pad, a substrate, and a second electrode pad. The sensing electrode outputs a signal corresponding to a capacitance between the sensing electrode and a detection target. The first electrode pad is coupled to the sensing electrode. The substrate includes a substrate surface portion and a step portion. On the substrate surface portion are the sensing electrode and the first electrode pad mounted. The step portion is provided at a position in the substrate lower than the substrate surface portion. The second electrode pad is mounted on the step portion and coupled to an external line.