Abstract:
A control device for an internal combustion engine includes an intake gas compressor, a cooling water circuit, an intercooler and an EGR device. An ECU is configured to: (a) control the temperature, of the cooling water of the intercooler to a target temperature in a specified external air state in which an external air temperature and an external air humidity are a specified temperature and a specified humidity, the target temperature being the temperature of the cooling water of the intercooler required for ensuring a specified performance in the specified external air state; and (b) control the EGR device based on an EGR rate mapping of the EGR rate. The EGR rate mapping being set so that a dew point of gas flowing into the intercooler does not exceed the target temperature.
Abstract:
An object of the present invention is to provide a technology that enables an abnormal combustion detection apparatus for a spark ignition internal combustion engine having a plurality of cylinders to detect abnormal combustion such as pre-ignition and knocking with improved accuracy. To achieve the object, according to the present invention, in an abnormal combustion detection apparatus for a spark-ignition internal combustion engine that determines or detects the occurrence of abnormal combustion by comparing a vibration intensity obtained from a measurement signal of a knock sensor and a determination threshold, when the occurrence of abnormal combustion is detected, the apparatus corrects a determination threshold for the next cylinder using as parameters the peak value of the vibration intensity at the time of the occurrence of abnormal combustion and the engine speed.
Abstract:
An internal combustion engine has a water-cooled intercooler cooling intake air turbocharged by a turbocharger. The intercooler has an HT intercooler into which HT cooling water passing through a cylinder block is introduced and an LT intercooler into which LT cooling water lower in temperature than the HT cooling water is introduced and the LT intercooler is arranged to abut against an intake downstream side of the HT intercooler. A target LT temperature is set to a high temperature-side target value in a case where a temperature of the HT cooling water flowing into the HT intercooler is lower than a target HT temperature correlated with warm-up completion and the target LT temperature is set to a low temperature-side target value in a case where the temperature of the HT cooling water is equal to or higher than the target HT temperature.
Abstract:
A controller for a hydrogen engine that includes an in-cylinder pressure sensor and an air-fuel ratio sensor includes processing circuitry. The processing circuitry is configured to execute a process that calculates a fluctuation amount of a combustion pressure based on an output of the in-cylinder pressure sensor and a process that calculates a correction amount based on the fluctuation amount. The correction amount is used to correct a rich deviation of an output of the air-fuel ratio sensor due to unburned hydrogen in exhaust gas.
Abstract:
A control device for an internal combustion engine which is provided with an engine body, a water injector for injecting water to the inside of an intake passage of the engine body, and a fuel injector for injecting fuel to be made to burn inside a combustion chamber of the engine body. The control device is provided with a water injection control part controlling the amount of injection of water from the water injector in the combustion cycle where fuel is injected from the fuel injector so that water vaporizing inside the intake passage during the suction stroke and water vaporizing inside the combustion chamber during the compression stroke are generated.
Abstract:
An electronic control unit of an internal combustion engine is configured to control the fuel injection valve and to control a spark plug if necessary such that fuel is combusted by pre-mixture compression ignition combustion or flame propagation combustion. The electronic control unit is configured to perform homogeneous combustion in a flame ignition operation range when switching failure has not occurred, the homogeneous combustion being combustion in which fuel homogeneously diffused into the combustion chamber is ignited using the spark plug and is combusted by flame propagation combustion. The electronic control unit is configured to perform spray-guided stratified combustion in a second operation range when the switching failure has occurred, the spray-guided stratified combustion being combustion in which fuel in the fuel injection path is ignited using the spark plug and is combusted by the flame propagation combustion.