摘要:
A multilayer sliding material for high-speed engine, comprising a steel back metal, a Cu or Cu-base alloy plating layer, a Cu-Pb bearing alloy layer, and an overlay, said steel back metal having 155 or more of Vickers hardness and 42 kgf/mm.sup.2 or more of 0.2% yield strength, a Cu-Pb bearing alloy layer containing 15-30 wt % of Pb and 0.5-2.0 wt % of Sn and having 0.25 cal/cm.s..degree. C. or more of thermal conductivity, 75 or more of Vickers hardness and 18 kgf/mm.sup.2 or more of tensile strength, said overlay of a lead base alloy containing 2-8 wt % of Sn and 3-11 wt % of In and having more than 250.degree. C. of melting start temperature. The material has a superior antiseizure property at high speed of engine. In particular, the rising of the melting start temperature of the metal of the overlay and the thermal conductivity of the bearing alloy provides a superior sliding property of plain bearing at high speed of engine.
摘要:
A Cu-based wear-resistant alloy of a sliding material consists essentially of, by weight, 10-35% Zn, 2-20% Pb, 1-10% Ni, 0.1-1% B and, as required, 0.5-10% of Sn. The alloy can be used under severe conditions of use at elevated speed and temperature with reduced risk of seizure and corrosion. The alloy can be produced by mixing Pb powder and Ni--B alloy powder with Cu--Zn powder or Cu--Zn--Sn alloy powder, or mixing Ni--B alloy powder with Cu--Zn--Pb alloy powder or Cu--Zn--Sn--Pb alloy powder. The alloy can be compacted and sintered to form a sliding member or a composite sliding member is obtained by sintering and integrating the alloy on a steel backing plate optionally having a surface plated with copper.
摘要:
A Cu-Pb system composite bearing has three layers including a backing metal, a bearing alloy layer formed on the backing metal, and an overlay formed on the bearing alloy layer. The Cu-Pb bearing alloy contains 2 to 10% Ni and 0.05 to 1.0% B. An example of the composition of the Cu-Pb system bearing alloy consists of 0.5 to 8% Sn, 15 to 30% Pb, 0.2% or less P, 2 to 10% Ni, 0.05 to 1.0% B and the balance of Cu and unavoidable impurities. The Cu-Pb bearing alloy must have a hardness over HV80. Ni and B contained in the bearing alloy decrease the affinity of the Cu-Pb bearing alloy for tin in the overlay of a tin-containing lead alloy. The corrosion resistance of the bearing is improved by plating the both surfaces of the composite bearing with Sn, Pb or an alloy thereof.
摘要:
An Ni-based bearing alloy consisting, by weight, of 9-30% Cr, 5-19% Fe, 0.1-1.5% Si, 2-22% Co, 1.4-11.0% Mo, and the balance Ni and incidental impurities, said alloy having a matrix in which hard particles of a Co-Mo-Cr-Si alloy and/or BN are uniformly dispersed in weight ratios of 5 to 35% and not more than 5.0, respectively. The Ni-based alloy matrix provides superior heat resistance. Hard particles of Co-Mo-Cr-Si alloy uniformly dispersed in the matrix improve sliding characteristic with or without uniform dispersion of Bn as a solid lubricant, whereby the bearing alloy exhibits superior heat resistance and sliding characteristic when used in high temperature oxidizing atmosphere.
摘要:
A multilayered sliding material of lead bronze containing graphite in the form of a bimetal, comprising a steel plate or a steel plate having a copper plating coating and a sintered copper alloy bonded to the steel plate, the sintered copper alloy having a composition consisting of 5 to 16 wt % Sn, 2 to 20 wt % Pb, 0.03 to 1 wt % P, 0.5 to 3.9 wt % graphite, and the balance Cu, wherein hardness of the alloy exceeds Hv 100.
摘要:
A multilayered iron-copper-lead alloy bearing material in the form of a bimetal, comprising a steel backing plate, an iron-copper-lead type sintered alloy layer whose major components is iron, a copper plating layer of a thickness of 2 to 20 .mu.m disposed between the steel backing plate and the iron-copper-lead type sintered alloy layer.
摘要:
Disclosed is a composite sliding material having a steel plate and a sintered copper alloy layer which is bonded to the steel plate. The copper alloy contains, 1.5 to 15 mass % Sn, 1.5 to 15 mass % Bi, 1.5 to 20 volume % of a solid lubricant, and balance of Cu and incidental impurities. The volume ratio of Bi to the solid lubricant is in a range of 0.5 to 2.0. Bi and the solid lubricant improves the copper alloy in sintering property, since Bi melts when sintering because of a low melting point resulting in improved sintering property, and the solid lubricant ensures good anti-seizure property, and deterioration of mechanical strength is prevented by virtue of a phenomenon that the solid lubricant is entrained in Bi.
摘要:
Disclosed is a copper alloy sliding material comprising 0.5 to 15 mass % Sn and 0.1 to 10 vol % of hard particles consisting of one or more selected from WC, W2C and Mo2C. The hard particles have preferably an average particle size of 0.1 to 10 &mgr;m, whereby they are dispersed in the copper alloy matrix so as to make the sliding-contact surface uneven, from which the hard particles protrude partially. The sliding material comprises an amount or a total amount of not more than 40 mass % of one or more selected from Ni, Ag, Fe, Al, Zn, Mn, Co, Si and P, an amount or a total amount of not more than 10 mass % of Bi and/or Pb, and/or an amount or a total amount of not more than 10 vol % of a solid lubricant comprising BN, graphite, MoS2 and/or WS2.
摘要:
A copper-based sliding material comprising sintered copper or sintered copper alloy, and 0.1 to 5 vol. % hard substance particles harder in hardness than said copper or copper alloy, said hard substance particles being substantially evenly dispersed so that, when at least one, randomly selected surface portion or sectional portion of said sintered copper or sintered copper alloy is partitioned into squares each having a side of 20 μm, at least one particle exists in each of squares not less than 80% of the whole squares. The copper-based sliding material has good anti-seizure property and superior resistance to fatigue without containing any lead.
摘要:
A copper-based sliding material produced by sintering, comprising at least two phases of copper and/or copper alloys which phases have hardness levels different form each other, and hard particles with an average particle size of 0.1 to 10 &mgr;m which are dispersed in at least one phase with the exception of a softest phase in an amount of 0.1 to 10 vol. % of the whole copper-based sliding material, said sliding material satisfying (H2/H1)≧1.2 in which H1 is the Vickers hardness of the softest phase and in which H2 is the Vickers hardness of a phase hardest in hardness including said hard particles.