Abstract:
A semiconductor device comprises a semiconductor substrate, a conductive pad over the semiconductor substrate, a conductive bump over the conductive pad, a conductive cap over the conductive bump, and a passivation layer over the semiconductor substrate and surrounding the conductive bump. A combination of the conductive bump and the conductive cap has a stepped sidewall profile. The passivation layer has an inner sidewall at least partially facing and spaced apart from an outer sidewall of the conductive bump.
Abstract:
A method for forming a chip package structure is provided. The method includes disposing a chip over a substrate. The method includes forming a heat-spreading wall structure over the substrate. The heat-spreading wall structure is adjacent to the chip, and there is a first gap between the chip and the heat-spreading wall structure. The method includes forming a first heat conductive layer in the first gap. The method includes forming a second heat conductive layer over the chip. The method includes disposing a heat-spreading lid over the substrate to cover the heat-spreading wall structure, the first heat conductive layer, the second heat conductive layer, and the chip. The heat-spreading lid is bonded to the substrate, the heat-spreading wall structure, the first heat conductive layer, and the second heat conductive layer.
Abstract:
A chip structure is provided. The chip structure includes a substrate. The chip structure includes a redistribution layer over the substrate. The chip structure includes a bonding pad over the redistribution layer. The chip structure includes a shielding pad over the redistribution layer and surrounding the bonding pad. The chip structure includes an insulating layer over the redistribution layer and the shielding pad. The chip structure includes a bump over the bonding pad and the insulating layer. A sidewall of the bump is over the shielding pad.
Abstract:
A semiconductor device includes a semiconductor substrate, a conductive pad over the semiconductor substrate, a conductive bump, a conductive cap over the conductive bump, and a passivation layer. The conductive pad is over the semiconductor substrate. The conductive bump is over the conductive pad, wherein the conductive bump has a stepped sidewall structure including a lower sidewall, an upper sidewall laterally offset from the lower sidewall, and an intermediary surface laterally extending from a bottom edge of the upper sidewall to a top edge of the lower sidewall. The conductive cap is over the conductive bump. The passivation layer is over the semiconductor substrate and laterally surrounds the conductive bump, wherein the passivation layer has a top surface higher than the intermediary surface of the stepped sidewall structure of the conductive bump and lower than a top surface of conductive cap.
Abstract:
A semiconductor device structure and method for forming the same are provided. The semiconductor device structure includes a first insulating layer formed over a conductive feature and a capacitor structure embedded in the first insulating layer. The semiconductor device also includes a bonding pad formed over the first insulating layer and corresponding to the capacitor structure. The bonding pad has a top surface and a multi-step edge to form at least three corners. In addition, the semiconductor device structure includes a second insulating layer conformally covering the at least three corners formed by the top surface and the multi-step edge of the bonding pad.
Abstract:
A package structure is provided. The package structure includes a substrate having a first surface and a second surface opposite the first surface. The substrate includes a cavity extending from the second surface toward the first surface, and thermal vias extending from a bottom surface of the cavity to the first surface. The package structure also includes at least one electronic device formed in the cavity and thermally coupled to the thermal vias. In addition, the package structure includes an insulating layer formed over the second surface and covering the first electronic device. The insulating layer includes a redistribution layer (RDL) structure electrically connected to the electronic device. The package structure also includes an encapsulating material formed in the cavity, extending along sidewalls of the electronic device and between the electronic device and the insulating layer.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a testing region and multiple first conductive lines over the testing region. The first conductive lines are electrically connected in series. The semiconductor device structure also includes multiple second conductive lines over the testing region. The second conductive lines are electrically connected in series, and the second conductive lines are physically separated from the first conductive lines. The semiconductor device structure further includes multiple magnetic structures wrapping around portions of the first conductive lines and wrapping around portions of the second conductive lines. The magnetic structures are arranged in a column.
Abstract:
A semiconductor device includes a semiconductor substrate. A pad region is disposed on the semiconductor substrate. A micro bump is disposed on the pad region. The micro bump has a first portion on the pad region and a second portion on the first portion. The first portion and the second portion have different widths. The first portion has a first width and the second portion has a second width. The first width is larger or smaller than the second width. The micro bump includes nickel and gold. The semiconductor device also includes a passivation layer overlying a portion of the pad region.
Abstract:
A semiconductor structure includes an interconnect structure, at least one first metal pad, at least one second metal pad, at least one first bump, at least one second bump, at least one photosensitive material, and a bonding layer. The first metal pad and the second metal pad are disposed on and electrically connected to the interconnect structure. The first bump is disposed on the first metal pad. The second bump is disposed on the second metal pad. The photosensitive material is disposed on the first bump. The bonding layer is in contact with the photosensitive material and the second bump. The photosensitive material is disposed between the first bump and the bonding layer.
Abstract:
A bump-on-trace interconnection structure utilizing a lower volume solder joint for joining a conductive metal pillar and a metal line trace includes a conductive metal pillar having a bonding surface having a width WP and a metal line trace, provided on a package substrate, having a top surface with a width WT, where WP is greater than WT. The solder joint is bonded to the bonding surface by wetting across the width WP and bonded predominantly only to the top surface of the metal line trace by wetting predominantly only to the top surface across the width WT.