Abstract:
A fluidic testing platform and methods of its operation are described. The fluidic cartridge includes a first fluidic channel and a wheel assembly coupled to the first fluidic channel. The wheel assembly includes a center portion coupled to the first fluidic channel and designed to deliver fluid through one or more second fluidic channels that radiate outward from the center portion. The wheel assembly also includes a third fluidic channel arranged in a closed loop and one or more capillaries coupled to an outer surface of the third fluidic channel and arranged to radiate outward from the center portion. The wheel assembly is designed to rotate such that fluid is forced outward from the center portion through the one or more capillaries.
Abstract:
An apparatus including an integrated reference electrode and a fluid dispenser is described. The reference electrode includes a body and a tip. The fluid dispenser at least partially surrounds the tip of the reference electrode and includes an inlet, a chamber, and an outlet. The fluid dispenser is configured to receive a fluid sample from the inlet to the chamber and form a droplet of the fluid sample through the outlet so that the droplet is in fluidic contact with the tip of the reference electrode and associated with a known potential determined by the reference electrode.
Abstract:
A fluidic cartridge and methods of operation are described. The fluidic cartridge includes a substrate having a plurality of contact pads designed to electrically couple with an analyzer, a semiconductor chip having a sensor array, and a reference electrode. The fluidic cartridge includes a first fluidic channel having an inlet and coupled to a second fluidic channel, the second fluidic channel being aligned such that the sensor array and the reference electrode are disposed within the second fluidic channel. A first plug is disposed at the first inlet. The first plug includes a compliant material configured to be punctured by a capillary without leaking fluid through the first plug.
Abstract:
A fluidic testing platform and methods of its operation are described. The fluidic cartridge includes a first fluidic channel and a wheel assembly coupled to the first fluidic channel. The wheel assembly includes a center portion coupled to the first fluidic channel and designed to deliver fluid through one or more second fluidic channels that radiate outward from the center portion. The wheel assembly also includes a third fluidic channel arranged in a closed loop and one or more capillaries coupled to an outer surface of the third fluidic channel and arranged to radiate outward from the center portion. The wheel assembly is designed to rotate such that fluid is forced outward from the center portion through the one or more capillaries.
Abstract:
A bioFET device includes a semiconductor substrate having a first surface and an opposite, parallel second surface and a plurality of bioFET sensors on the semiconductor substrate. Each of the bioFET sensors includes a gate formed on the first surface of the semiconductor substrate and a channel region formed within the semiconductor substrate beneath the gate and between source/drain (S/D) regions in the semiconductor substrate. The channel region includes a portion of the second surface of the semiconductor substrate. An isolation layer is disposed on the second surface of the semiconductor substrate. The isolation layer has an opening positioned over the channel region of more than one bioFET sensor of the plurality of bioFET sensors. An interface layer is disposed on the channel region of the more than one bioFET sensor in the opening.
Abstract:
The present disclosure relates to a method of optimizing the area of series gate layout structures for FinFET devices. The method analyzes an integrated chip (IC) layout to determine a first gate material density along a first direction and to separately determine a second gate material density along a second direction based upon the first gate material density. A number of series gate stages for a FinFET (field effect transistor) device having a gate length along the second direction, is chosen based upon the second gate material density and one or more device performance parameters of the FinFET device. By analyzing the density of gate material in separate directions, the effective length of the gate of the FinFET can be increased without increasing the size of the transistor array.