Abstract:
Provided is an integrated circuit (IC) manufacturing method. The method includes receiving an IC design layout, wherein the IC design layout includes multiple IC regions and each of the IC regions includes an initial IC pattern. The method further includes performing a correction process to a first IC region, thereby modifying the initial IC pattern in the first IC region to result in a first corrected IC pattern in the first IC region, wherein the correction process includes location effect correction. The method further includes replacing the initial IC pattern in a second IC region with the first corrected IC pattern.
Abstract:
An integrated circuit (IC) manufacturing method includes receiving an IC design layout having IC regions separate from each other. Each of the IC regions includes an initial IC pattern that is substantially identical among the IC regions. The method further includes identifying a group of IC regions from the IC regions. All IC regions in the group have a substantially same location effect, which is introduced by global locations of the IC regions on the IC design layout. The method further includes performing a correction process to a first IC region in the group, modifying the initial IC pattern in the first IC region into a first corrected IC pattern. The correction process includes using a computer program to correct location effect. The method further includes replacing the initial IC pattern in a second IC region in the group with the first corrected IC pattern.
Abstract:
An integrated circuit (IC) manufacturing method includes receiving an IC design layout having IC regions separate from each other. Each of the IC regions includes an initial IC pattern that is substantially identical among the IC regions. The method further includes identifying a group of IC regions from the IC regions. All IC regions in the group have a substantially same location effect, which is introduced by global locations of the IC regions on the IC design layout. The method further includes performing a correction process to a first IC region in the group, modifying the initial IC pattern in the first IC region into a first corrected IC pattern. The correction process includes using a computer program to correct location effect. The method further includes replacing the initial IC pattern in a second IC region in the group with the first corrected IC pattern.
Abstract:
A method for writing a design to a material using an electron beam includes assigning a first dosage to a first polygonal shape. The first polygonal shape occupies a first virtual layer and includes a first set of pixels. The method also includes simulating a first write operation using the first polygonal shape to create the design, discerning an error in the simulated first write operation, and assigning a second dosage to a second polygonal shape to reduce the error. The second polygonal shape occupies a second virtual layer. The method further includes creating a data structure that includes the first and second polygonal shapes and saving the data structure to a non-transitory computer-readable medium.
Abstract:
Provided is an integrated circuit (IC) manufacturing method. The method includes receiving a design layout of an IC, wherein the design layout includes a plurality of non-overlapping IC regions and each of the IC regions includes a same initial IC pattern. The method further includes dividing the IC regions into a plurality of groups based on a location effect analysis such that all IC regions in a respective one of the groups are to have substantially same location effect. The method further includes performing a correction to one IC region in each of the groups using a correction model that includes location effect; and copying the corrected IC region to other IC regions in the respective group. The method further includes storing the corrected IC design layout in a tangible computer-readable medium for use by a further IC process stage.
Abstract:
A method for performing optical proximity correction (OPC) and evaluating OPC solutions is disclosed. An exemplary method includes receiving a design database corresponding to an IC circuit mask. A first OPC modification to a mask feature of the design database is made by performing a first OPC process. The OPC process includes: dividing the mask feature into child shapes and adjusting an attribute of a child shape based on an edge placement error (EPE) factor. A first lithography simulation is performed utilizing a first set of performance indexes after making the first OPC modification, and a second OPC modification to the mask feature is made based on a result of the first lithography simulation. A second lithography simulation of the mask feature is performed utilizing a second set of performance indexes to verify the first and second OPC modifications, and the design database is provided for manufacturing.
Abstract:
A method for performing optical proximity correction (OPC) and evaluating OPC solutions is disclosed. An exemplary method includes receiving a design database corresponding to an IC circuit mask. A first OPC modification to a mask feature of the design database is made by performing a first OPC process. The OPC process includes: dividing the mask feature into child shapes and adjusting an attribute of a child shape based on an edge placement error (EPE) factor. A first lithography simulation is performed utilizing a first set of performance indexes after making the first OPC modification, and a second OPC modification to the mask feature is made based on a result of the first lithography simulation. A second lithography simulation of the mask feature is performed utilizing a second set of performance indexes to verify the first and second OPC modifications, and the design database is provided for manufacturing.
Abstract:
Provided is an integrated circuit (IC) manufacturing method. The method includes receiving an IC design layout, wherein the IC design layout includes multiple IC regions and each of the IC regions includes an initial IC pattern. The method further includes performing a correction process to a first IC region, thereby modifying the initial IC pattern in the first IC region to result in a first corrected IC pattern in the first IC region, wherein the correction process includes location effect correction. The method further includes replacing the initial IC pattern in a second IC region with the first corrected IC pattern.
Abstract:
Provided is an integrated circuit (IC) manufacturing method. The method includes receiving a design layout of an IC, wherein the design layout includes a plurality of non-overlapping IC regions and each of the IC regions includes a same initial IC pattern. The method further includes dividing the IC regions into a plurality of groups based on a location effect analysis such that all IC regions in a respective one of the groups are to have substantially same location effect. The method further includes performing a correction to one IC region in each of the groups using a correction model that includes location effect; and copying the corrected IC region to other IC regions in the respective group. The method further includes storing the corrected IC design layout in a tangible computer-readable medium for use by a further IC process stage.
Abstract:
A method for writing a design to a material using an electron beam includes assigning a first dosage to a first polygonal shape. The first polygonal shape occupies a first virtual layer and includes a first set of pixels. The method also includes simulating a first write operation using the first polygonal shape to create the design, discerning an error in the simulated first write operation, and assigning a second dosage to a second polygonal shape to reduce the error. The second polygonal shape occupies a second virtual layer. The method further includes creating a data structure that includes the first and second polygonal shapes and saving the data structure to a non-transitory computer-readable medium.