摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a substrate (121), a first n-type semiconductor layer (122) disposed on the substrate (121), and a second n-type semiconductor layer (123) and a conductor (124) disposed apart from each other on the first n-type semiconductor layer (122); a counter electrode (130) connected electrically to the conductor (124); an electrolyte (140) in contact with surfaces of the second n-type semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). In the semiconductor electrode (120), relative to a vacuum level, (I) band edge levels of a conduction band and a valence band in the second n-type semiconductor layer (123), respectively, are higher than band edge levels of a conduction band and a valence band in the first n-type semiconductor layer (122), (II) a Fermi level of the first n-type semiconductor layer (122) is higher than a Fermi level of the second n-type semiconductor layer (123), and (III) a Fermi level of the conductor (124) is higher than the Fermi level of the first n-type semiconductor layer (122). The photoelectrochemical cell (100) generates hydrogen by irradiation of the second n-type semiconductor layer (123) with light.
摘要:
The NbON film of the present invention is a NbON film in which a photocurrent is generated by light irradiation. The NbON film of the present invention is desirably a single-phase film. The hydrogen generation device (600) of the present invention includes: an optical semiconductor electrode (620) including a conductor (621) and the NbON film (622) of the present invention disposed on the conductor (621); a counter electrode (630) connected electrically to the conductor (621); a water-containing electrolyte (640) disposed in contact with a surface of the NbON film (622) and a surface of the counter electrode (630); and a container (610) containing the optical semiconductor electrode (620), the counter electrode (630), and the electrolyte (640). In this device, hydrogen is generated by irradiating the NbON film (622) with light.
摘要:
The NbON film of the present invention is a NbON film in which a photocurrent is generated by light irradiation. The NbON film of the present invention is desirably a single-phase film. The hydrogen generation device (600) of the present invention includes: an optical semiconductor electrode (620) including a conductor (621) and the NbON film (622) of the present invention disposed on the conductor (621); a counter electrode (630) connected electrically to the conductor (621); a water-containing electrolyte (640) disposed in contact with a surface of the NbON film (622) and a surface of the counter electrode (630); and a container (610) containing the optical semiconductor electrode (620), the counter electrode (630), and the electrolyte (640). In this device, hydrogen is generated by irradiating the NbON film (622) with light.
摘要:
The optical semiconductor of the present invention is an optical semiconductor containing In, Ga, Zn, O and N, and has a composition in which a part of oxygen (O) is substituted by nitrogen (N) in a general formula: In2xGa2(1-x)O3(ZnO)y, where x and y satisfy 0.2
摘要翻译:本发明的光学半导体是含有In,Ga,Zn,O和N的光学半导体,其通式为:In 2 x Ga 2(1)中的一部分氧(O)被氮(N)取代的组成 -x)O 3(ZnO)y,其中x和y满足0.2
摘要:
The method for producing the optical semiconductor of the present disclosure includes a mixing step of producing a mixture containing a reduction inhibitor and a niobium compound that contains at least oxygen in its composition; a nitriding step of nitriding the mixture by the reaction between the mixture and a nitrogen compound gas; and a washing step of isolating niobium oxynitride from the material obtained through the nitriding step by dissolving chemical species other than niobium oxynitride with a washing liquid. The optical semiconductor of the present disclosure substantially consists of niobium oxynitride having a crystal structure of baddeleyite and having a composition represented by the composition formula, NbON.
摘要:
A photoelectrode (100) of the present invention includes a conductive layer (12) and a photocatalytic layer (13) provided on the conductive layer (12). The conductive layer (12) is made of a metal nitride. The photocatalytic layer (13) is made of at least one selected from the group consisting of a nitride semiconductor and an oxynitride semiconductor. When the photocatalytic layer (13) is made of a n-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is smaller than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13).When the photocatalytic layer (13) is made of a p-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is larger than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13).
摘要:
An energy system includes an solar hydrogen producing unit (101) that produces hydrogen through decomposition of water by a photocatalytic effect, a fuel cell (103) that generates electricity by a reaction between the hydrogen produced by the solar hydrogen producing unit (101) and an oxidizing gas and discharges water as a reaction product, and a water distribution mechanism (104) that returns the water serving as the reaction product discharged from the fuel cell (103) to the solar hydrogen producing unit (101). With the configuration, an energy system that suppresses an amount of external water supply to a low level to achieve good water balance can be provided.
摘要:
The optical semiconductor of the present invention is an optical semiconductor containing In, Ga, Zn, O and N, and has a composition in which a part of oxygen (O) is substituted by nitrogen (N) in a general formula: In2xGa2(1-x)O3(ZnO)y, where x and y satisfy 0.2
摘要翻译:本发明的光学半导体是含有In,Ga,Zn,O和N的光学半导体,其通式为:In 2 x Ga 2(1)中的一部分氧(O)被氮(N)取代的组成 -x)O 3(ZnO)y,其中x和y满足0.2
摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a substrate (121), a first n-type semiconductor layer (122) disposed on the substrate (121), and a second n-type semiconductor layer (123) and a conductor (124) disposed apart from each other on the first n-type semiconductor layer (122); a counter electrode (130) connected electrically to the conductor (124); an electrolyte (140) in contact with surfaces of the second n-type semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). In the semiconductor electrode (120), relative to a vacuum level, (I) band edge levels of a conduction band and a valence band in the second n-type semiconductor layer (123), respectively, are higher than band edge levels of a conduction band and a valence band in the first n-type semiconductor layer (122), (II) a Fermi level of the first n-type semiconductor layer (122) is higher than a Fermi level of the second n-type semiconductor layer (123), and (III) a Fermi level of the conductor (124) is higher than the Fermi level of the first n-type semiconductor layer (122). The photoelectrochemical cell (100) generates hydrogen by irradiation of the second n-type semiconductor layer (123) with light.
摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121) and semiconductor layers (122, 123) disposed on the conductor (121); a counter electrode (130) connected electrically to the conductor (121); an electrolyte (140) in contact with surfaces of the semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). A band edge level ECS of a conduction band, a band edge level EVS of a valence band, and a Fermi level EFS in a surface near-field region of the semiconductor layer, and a band edge level ECJ of a conduction band, a band edge level EVJ of a valence band, and a Fermi level EFJ in a junction plane near-field region of the semiconductor layer with the conductor satisfy, relative to a vacuum level, ECS-EFS>ECJ-EFJ, EFS-EVS −4.44 eV, and EVS