摘要:
A method for manufacturing a piezoelectric/electrostrictive element includes a step of subjecting the piezoelectric/electrostrictive film to a heat treatment and a polarization treatment after the film is allowed to stand until the value of an electric constant has converged after the heat treatment. The piezoelectric/electrostrictive element manufactured in this method has small stress remaining in the piezoelectric/electrostrictive film, and predetermined performance regarding, for example, a displacement amount, a displacement-generating force, and an electric power efficiency (consumed electric power) as a piezoelectric/electrostrictive element (piezoelectric/electrostrictive film) is never spoiled.
摘要:
A method for manufacturing a piezoelectric/electrostrictive element includes a step of subjecting the piezoelectric/electrostrictive film to a heat treatment and a polarization treatment after the film is allowed to stand until the value of an electric constant has converged after the heat treatment. The piezoelectric/electrostrictive element manufactured in this method has small stress remaining in the piezoelectric/electrostrictive film, and predetermined performance regarding, for example, a displacement amount, a displacement-generating force, and an electric power efficiency (consumed electric power) as a piezoelectric/electrostrictive element (piezoelectric/electrostrictive film) is never spoiled.
摘要:
Disclosed is a piezoelectric/electrostrictive membrane type sensor 20 provided with a ceramic base body 1 and a piezoelectric/electrostrictive element 12. The ceramic base body is provided with a thin diaphragm portion 3, a thick portion 2 and a cavity 10 formed by the portions. The piezoelectric/electrostrictive element is arranged on the ceramic base body 1 and includes a piezoelectric/electrostrictive body 5, and an upper electrode 6 and a lower electrode 4 sandwiching the piezoelectric/electrostrictive body 5. In the piezoelectric/electrostrictive membrane type sensor 20, the piezoelectric/electrostrictive body 5 contains an alkaline metal or an alkaline earth metal, and the upper electrode 6 and the lower electrode 4 contain gold or platinum. When there is a change in the atmosphere at a place where the sensor is used, the sensor copes with such change and at least prevents continuation of low-quality measurement.
摘要:
A method for inspecting a piezoelectric element includes first-inspection-signal application step of applying to the piezoelectric element a first inspection signal Vp(1) having a first predetermined voltage waveform; first-characteristic-value measurement step of measuring, as a first characteristic value, an electrical characteristic value of the piezoelectric element after application of the first inspection signal; second-inspection-signal application step of applying to the piezoelectric element a second inspection signal Vp(2) having a second predetermined voltage waveform and an electrical power greater than that of the first inspection signal; second-characteristic-value measurement step of measuring, as a second characteristic value, the electrical characteristic value of the piezoelectric element after application of the second inspection signal; and anomaly determination step of determining whether or not the piezoelectric element is anomalous on the basis of a value corresponding to the difference between the measured second characteristic value and the measured first characteristic value.
摘要:
A piezoelectric/electrostrictive membrane type sensor is provided with a ceramic base body and a piezoelectric/electrostrictive element. The ceramic base body includes a thin diaphragm portion, a thick portion and a cavity formed by the portions. The piezoelectric/electrostrictive element is arranged on the ceramic base body and also includes a piezoelectric/electrostrictive body, and an upper electrode and a lower electrode sandwiching the piezoelectric/electrostrictive body. Further, the piezoelectric/electrostrictive body contains an alkaline metal or an alkaline earth metal, with the upper electrode and the lower electrode containing gold or platinum. When there is a change in the atmosphere at a place where the sensor is used, the sensor copes with such change and at least prevents the continuation of a low-quality measurement.
摘要:
A lower electrode 4 and an auxiliary electrode 8, a piezoelectric/electrostrictive film 5, and an upper electrode 6 are sequentially arranged in layers on a substrate 1. The lower electrode 4 is continuously formed in a region ranging from a first portion of the thick-walled portion 2 to a thin-walled diaphragm portion 3. The auxiliary electrode 8 is continuously formed in a region ranging from a second portion of the thick-walled portion 2 opposite the first portion to a position on the thin-walled diaphragm portion 3, the position being separated from the lower electrode 4. The upper electrode 6 is formed in such a manner as to overlie the piezoelectric/electrostrictive film 5 and the auxiliary electrode 8. Furthermore, a connection electrode 20 is provided for electrically connecting the upper electrode 6 and the auxiliary electrode 8. Thus, a plurality of paths are provided for electrically connecting the upper electrode 6 and the auxiliary electrode 8. Therefore, even when connection through a certain path is cut off due to fracture of a portion of the upper electrode 6 caused by deterioration in insulating performance of the piezoelectric/electrostrictive film 5, electrical connection between the upper electrode 6 and the auxiliary electrode 8 can be maintained through the remaining path(s).
摘要:
A lower electrode 4 and an auxiliary electrode 8, a piezoelectric/electrostrictive film 5, and an upper electrode 6 are sequentially arranged in layers on a substrate 1. The lower electrode 4 is continuously formed in a region ranging from a first portion of the thick-walled portion 2 to a thin-walled diaphragm portion 3. The auxiliary electrode 8 is continuously formed in a region ranging from a second portion of the thick-walled portion 2 opposite the first portion to a position on the thin-walled diaphragm portion 3, the position being separated from the lower electrode 4. The upper electrode 6 is formed in such a manner as to overlie the piezoelectric/electrostrictive film 5 and the auxiliary electrode 8. Furthermore, a connection electrode 20 is provided for electrically connecting the upper electrode 6 and the auxiliary electrode 8. Thus, a plurality of paths are provided for electrically connecting the upper electrode 6 and the auxiliary electrode 8. Therefore, even when connection through a certain path is cut off due to fracture of a portion of the upper electrode 6 caused by deterioration in insulating performance of the piezoelectric/electrostrictive film 5, electrical connection between the upper electrode 6 and the auxiliary electrode 8 can be maintained through the remaining path(s).
摘要:
A method for inspecting a piezoelectric element includes first-inspection-signal application step of applying to the piezoelectric element a first inspection signal Vp(1) having a first predetermined voltage waveform; first-characteristic-value measurement step of measuring, as a first characteristic value, an electrical characteristic value of the piezoelectric element after application of the first inspection signal; second-inspection-signal application step of applying to the piezoelectric element a second inspection signal Vp(2) having a second predetermined voltage waveform and an electrical power greater than that of the first inspection signal; second-characteristic-value measurement step of measuring, as a second characteristic value, the electrical characteristic value of the piezoelectric element after application of the second inspection signal; and anomaly determination step of determining whether or not the piezoelectric element is anomalous on the basis of a value corresponding to the difference between the measured second characteristic value and the measured first characteristic value.
摘要:
A method for inspecting a piezoelectric element includes first-inspection-signal application step of applying to the piezoelectric element a first inspection signal Vp(1) having a first predetermined voltage waveform; first-characteristic-value measurement step of measuring, as a first characteristic value, an electrical characteristic value of the piezoelectric element after application of the first inspection signal; second-inspection-signal application step of applying to the piezoelectric element a second inspection signal Vp(2) having a second predetermined voltage waveform and an electrical power greater than that of the first inspection signal; second-characteristic-value measurement step of measuring, as a second characteristic value, the electrical characteristic value of the piezoelectric element after application of the second inspection signal; and anomaly determination step of determining whether or not the piezoelectric element is anomalous on the basis of a value corresponding to the difference between the measured second characteristic value and the measured first characteristic value.
摘要:
A chemical sensor element contains a resonator having a first reflector in which particles of a fine metal structure are arranged two-dimensionally and periodically is counterposed with interposition of a dielectric layer to a second reflector, wherein the resonance wavelength of a resonator in which the entire of the first reflector is replaced by a metal thin film having the same thickness as the metal fine structure is different from the surface plasmon resonance wavelength induced in the metal fine structure; and the mode of the surface plasmon resonance excited in the metal fine structure is coupled with the mode of the resonator in which the entire of the first reflector is replaced by the metal thin film.