Structure and method to form input/output devices
    1.
    发明授权
    Structure and method to form input/output devices 有权
    结构和方法来形成输入/输出设备

    公开(公告)号:US08836037B2

    公开(公告)日:2014-09-16

    申请号:US13584156

    申请日:2012-08-13

    摘要: A limited number of cycles of atomic layer deposition (ALD) of Hi-K material followed by deposition of an interlayer dielectric and application of further Hi-K material and optional but preferred annealing provides increased Hi-K material content and increased breakdown voltage for input/output (I/O) transistors compared with logic transistors formed on the same chip or wafer while providing scalability of the inversion layer of the I/O and logic transistors without significantly compromising performance or bias temperature instability (BTI) parameters.

    摘要翻译: 有限数量的Hi-K材料的原子层沉积(ALD)循环,然后沉积层间电介质并施加另外的Hi-K材料并且可选但优选的退火提供了增加的Hi-K材料含量和增加的输入的击穿电压 与输入/输出(I / O)晶体管相比,与同一芯片或晶圆上形成的逻辑晶体管相比,同时提供I / O和逻辑晶体管的反型层的可扩展性,而不会明显地影响性能或偏置温度不稳定性(BTI)参数。

    STRUCTURE AND METHOD TO FORM INPUT/OUTPUT DEVICES
    2.
    发明申请
    STRUCTURE AND METHOD TO FORM INPUT/OUTPUT DEVICES 有权
    用于形成输入/输出设备的结构和方法

    公开(公告)号:US20140042546A1

    公开(公告)日:2014-02-13

    申请号:US13584156

    申请日:2012-08-13

    摘要: A limited number of cycles of atomic layer deposition (ALD) of Hi-K material followed by deposition of an interlayer dielectric and application of further Hi-K material and optional but preferred annealing provides increased Hi-K material content and increased breakdown voltage for input/output (I/O) transistors compared with logic transistors formed on the same chip or wafer while providing scalability of the inversion layer of the I/O and logic transistors without significantly compromising performance or bias temperature instability (BTI) parameters.

    摘要翻译: 有限数量的Hi-K材料的原子层沉积(ALD)循环,然后沉积层间电介质并施加另外的Hi-K材料并且可选但优选的退火提供了增加的Hi-K材料含量和增加的输入的击穿电压 与输入/输出(I / O)晶体管相比,与同一芯片或晶圆上形成的逻辑晶体管相比,同时提供I / O和逻辑晶体管的反型层的可扩展性,而不会明显地影响性能或偏置温度不稳定性(BTI)参数。

    Scavenging metal stack for a high-k gate dielectric
    3.
    发明授权
    Scavenging metal stack for a high-k gate dielectric 有权
    用于高k栅极电介质的清除金属堆叠

    公开(公告)号:US07989902B2

    公开(公告)日:2011-08-02

    申请号:US12487248

    申请日:2009-06-18

    摘要: A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.

    摘要翻译: 高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。

    Reducing the inversion oxide thickness of a high-K stack fabricated on high mobility semiconductor material
    5.
    发明授权
    Reducing the inversion oxide thickness of a high-K stack fabricated on high mobility semiconductor material 有权
    降低在高迁移率半导体材料上制造的高K叠层的反型氧化物厚度

    公开(公告)号:US08853751B2

    公开(公告)日:2014-10-07

    申请号:US13614962

    申请日:2012-09-13

    摘要: A semiconductor structure includes a high mobility semiconductor, an interfacial oxide layer, a high dielectric constant (high-k) layer, a stack, a gate electrode, and a gate dielectric. The stack comprises a lower metal layer, a scavenging metal layer comprising a scavenging metal, and an upper metal layer formed on the scavenging metal layer. A Gibbs free energy change of a chemical reaction, in which an atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer combines with a metal oxide material comprising the scavenging metal and oxygen to form the scavenging metal in elemental form and oxide of the atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer, is positive.

    摘要翻译: 半导体结构包括高迁移率半导体,界面氧化物层,高介电常数(高k)层,堆叠,栅极电极和栅极电介质。 堆叠包括下金属层,包含清除金属的清除金属层和形成在扫气金属层上的上金属层。 化学反应的吉布斯自由能变化,其中构成直接与界面氧化物层接触的高迁移率半导体层的原子与包含清除金属和氧的金属氧化物材料结合,以形成元素形式的清除金属和氧化物 构成与界面氧化物层直接接触的高迁移率半导体层的原子为正。

    Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET
    6.
    发明申请
    Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET 审中-公开
    高K金属栅P型MOSFET的低阈值电压和反转氧化层厚度缩放

    公开(公告)号:US20130032886A1

    公开(公告)日:2013-02-07

    申请号:US13195316

    申请日:2011-08-01

    IPC分类号: H01L27/092 H01L21/8238

    摘要: A structure has a semiconductor substrate and an nFET and a pFET disposed upon the substrate. The pFET has a semiconductor SiGe channel region formed upon or within a surface of the semiconductor substrate and a gate dielectric having an oxide layer overlying the channel region and a high-k dielectric layer overlying the oxide layer. A gate electrode overlies the gate dielectric and has a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The metal layer scavenges oxygen from the substrate (nFET) and SiGe (pFET) interface with the oxide layer resulting in an effective reduction in Tinv and Vt of the pFET, while scaling Tiny and maintaining Vt for the nFET, resulting in the Vt of the pFET becoming closer to the Vt of a similarly constructed nFET with scaled Tinv values.

    摘要翻译: 结构具有半导体衬底以及设置在衬底上的nFET和pFET。 pFET具有形成在半导体衬底的表面上或其表面上的半导体SiGe沟道区,以及覆盖沟道区的氧化物层和覆盖氧化物层的高k电介质层的栅极电介质。 栅电极覆盖在栅极电介质上,并且具有邻接高k层的下金属层,邻接下金属层的清除金属层和与清除金属层邻接的上金属层。 金属层清除了衬底(nFET)中的氧和与氧化物层的SiGe(pFET)界面,导致pFET的Tinv和Vt有效降低,同时缩小Tiny并维持nFET的Vt,导致Vt pFET变得更接近具有缩放Tinv值的类似构造的nFET的Vt。

    SCAVANGING METAL STACK FOR A HIGH-K GATE DIELECTRIC
    7.
    发明申请
    SCAVANGING METAL STACK FOR A HIGH-K GATE DIELECTRIC 有权
    用于高K栅介质的SCAVANGING金属叠层

    公开(公告)号:US20100320547A1

    公开(公告)日:2010-12-23

    申请号:US12487248

    申请日:2009-06-18

    摘要: A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.

    摘要翻译: 高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。

    Reducing the inversion oxide thickness of a high-k stack fabricated on high mobility semiconductor material
    9.
    发明授权
    Reducing the inversion oxide thickness of a high-k stack fabricated on high mobility semiconductor material 有权
    降低在高迁移率半导体材料上制造的高k叠层的反转氧化物厚度

    公开(公告)号:US08865551B2

    公开(公告)日:2014-10-21

    申请号:US13536764

    申请日:2012-06-28

    摘要: A high mobility semiconductor layer is formed over a semiconductor substrate. An interfacial oxide layer is formed over the high mobility semiconductor layer. A high dielectric constant (high-k) dielectric layer is formed over the interfacial oxide layer. A stack is formed over the high-k dielectric layer. The stack comprises a lower metal layer, a scavenging metal layer comprising a scavenging metal, and an upper metal layer formed on the scavenging metal layer. A Gibbs free energy change of a chemical reaction, in which an atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer combines with a metal oxide material comprising the scavenging metal and oxygen to form the scavenging metal in elemental form and oxide of the atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer, is positive. A gate electrode and a gate dielectric are formed.

    摘要翻译: 在半导体衬底上形成高迁移率半导体层。 在高迁移率半导体层上形成界面氧化物层。 在界面氧化物层上形成高介电常数(high-k)介电层。 堆叠形成在高k电介质层上。 堆叠包括下金属层,包含清除金属的清除金属层和形成在扫气金属层上的上金属层。 化学反应的吉布斯自由能变化,其中构成直接与界面氧化物层接触的高迁移率半导体层的原子与包含清除金属和氧的金属氧化物材料结合,以形成元素形式的清除金属和氧化物 构成与界面氧化物层直接接触的高迁移率半导体层的原子为正。 形成栅极电极和栅极电介质。

    SCAVANGING METAL STACK FOR A HIGH-K GATE DIELECTRIC
    10.
    发明申请
    SCAVANGING METAL STACK FOR A HIGH-K GATE DIELECTRIC 有权
    用于高K栅介质的SCAVANGING金属叠层

    公开(公告)号:US20110207280A1

    公开(公告)日:2011-08-25

    申请号:US13099790

    申请日:2011-05-03

    IPC分类号: H01L21/336

    摘要: A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.

    摘要翻译: 高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。