摘要:
A semiconductor device with high conductivity interconnection lines formed of high conductivity material, such as copper, is manufactured using tantalum nitride material as barrier material between an aluminum layer, such as the wire bonding layer, and the underlying high conductivity interconnection lines. The tantalum nitride material contains high nitrogen content.
摘要:
A test structure used to measure metal bottom coverage in semiconductor integrated circuits. The metal is deposited in etched trenches, vias and/or contacts created during the integrated circuit manufacturing process. A predetermined pattern of probe contacts are disposed about the semiconductor wafer. Metal deposited in the etched areas is heated to partially react with the underlying and surrounding undoped material. The remaining unreacted metal layer is then removed, and an electrical current is applied to the probe contacts. The resistance of the reacted portion of metal and undoped material is measured to determine metal bottom coverage. Some undoped material may also be removed to measure metal sidewall coverage. The predetermined pattern of probe contacts is preferably arranged in a Kelvin or Vander Paaw structure.
摘要:
A self-aligned semiconductor interconnect barrier between channels and vias is provided which is self-aligned and made of a metallic barrier material. A channel is conventionally formed in the semiconductor dielectric, lined with a first metallic barrier material, and filled with a conductive material. A recess is etched to a predetermined depth into the conductive material, and the second metallic barrier material is deposited and removed outside the channel. This leaves the conductive material totally enclosed in metallic barrier material. The metallic barrier material is selected from metals such as tantalum, titanium, tungsten, compounds thereof, alloys thereof, and combinations thereof.
摘要:
A test structure used to measure metal bottom coverage in semiconductor integrated circuits. The metal is deposited in etched trenches, vias and/or contacts created during the integrated circuit manufacturing process. A predetermined pattern of probe contacts are disposed about the semiconductor wafer. Metal deposited in the etched areas is heated to partially react with the underlying and surrounding undoped material. The remaining unreacted metal layer is then removed, and an electrical current is applied to the probe contacts. The resistance of the reacted portion of metal and undoped material is measured to determine metal bottom coverage. Some undoped material may also be removed to measure metal sidewall coverage. The predetermined pattern of probe contacts is preferably arranged in a Kelvin or Vander Paaw structure.
摘要:
The adhesion of a diffusion barrier or capping layer to a Cu or Cu alloy interconnect member is significantly enhanced by treating the exposed surface of the Cu or Cu alloy interconnect member: (a) under plasma conditions with ammonia and silane or dichlorosilane to form a copper silicide layer thereon; or (b) with an ammonia plasma followed by reaction with silane or dichlorosilane to form a copper silicide layer thereon. The diffusion barrier layer is then deposited on the copper suicide layer. Embodiments include electroplating or electroless plating Cu or a Cu alloy to fill a damascene opening in a dielectric interlayer, chemical mechanical polishing, then treating the exposed surface of the Cu/Cu alloy interconnect to form the copper silicide layer thereon, and depositing a silicon nitride diffusion barrier layer on the copper silicide layer.
摘要:
A method for eliminating copper atomic residue from the channel oxide layer on semiconductors after chemical-mechanical polishing is provided. After chemical-mechanical polishing, the silicon oxide is plasma etched to remove its surface and any residue. After plasma etching, an etch stop layer of silicon nitride is deposited by chemical-vapor deposition. Both the plasma etch of the silicon dioxide and the chemical-vapor deposition of the silicon nitride can be performed in the same vacuum chamber in the same semiconductor processing tool with only a change of the gas mixture.
摘要:
A method is provided for forming tantalum/copper barrier/seed layers in semiconductor channels or vias by using a pulsed laser annealing step. The pulsed laser can be controlled to heat the copper seed material for such short periods of time that the copper seed material does not agglomerate but the temperature is high enough to form an intermixed layer with the tantalum.
摘要:
Cu interconnection patterns with improved electromigration resistance are formed by depositing a barrier metal layer, such as W or WN, to line an opening in a dielectric layer. The exposed surface of the deposited barrier metal layer is treated with silane or dichlorosaline to form a thin silicon layer thereon. Cu is then deposited to fill the opening and reacted with the thin silicon layer to form a thin layer of Cu silicide at the interface between Cu and the barrier metal layer, thereby reducing the interface defect density and improving electromigration resistance.
摘要:
The present invention relates to the formation of a protective intermetallic layer 15 on the surface of damascene metal interconnects 12 during semiconductor fabrication. The intermetallic layer 15 prevents problems associated with formation of an oxide layer on the surface of the interconnect. The intermetallic layer is formed by depositing a metal on the surface of the interconnect that will both reduce any present metal oxide layer and form an intermetallic with the interconnect metal.
摘要:
The adhesion of a diffusion barrier or capping layer to a Cu or Cu alloy interconnect member is significantly enhanced by treating the exposed surface of the Cu or Cu alloy interconnect member with an ammonia plasma followed by depositing the diffusion barrier layer on the treated surface. Embodiments include electroplating or electroless plating Cu or a Cu alloy to fill a damascene opening in a dielectric interlayer, chemical mechanical polishing, treating the exposed surface of the Cu/Cu alloy interconnect with an ammonia plasma, and depositing a silicon nitride diffusion barrier layer directly on the plasma treated surface.