摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer in order to emit various colored lights including white light. The device can include a board, a frame located on the board, at least one light-emitting chip mounted on the board, the wavelength converting layer located between an optical plate and an outside surface of the chips so that a density of a peripheral region is lower than that of a middle region, and a reflective material layer disposed at least between the frame and a side surface of the wavelength-converting layer. The device can have the reflective material layer form each reflector and can use a wavelength converting layer having different densities, and therefore can emit a wavelength-converted light having a high light-emitting efficiency and a uniform color tone from various small light-emitting surfaces.
摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer located over at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, a frame located on the base board, the chip mounted on the base board, a transparent material layer located between the wavelength converting layer and a side surface of the chip so as to extend toward the wavelength converting layer, and a reflective material layer disposed at least between the frame and both side surfaces of the wavelength converting layer and the transparent material layer. The semiconductor light-emitting device can be configured to improve light-emitting efficiency of the chip by using the reflective material layer as a reflector, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from a small light-emitting surface.
摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer located over at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, a frame located on the base board, the chip mounted on the base board, a transparent material layer located between the wavelength converting layer and a side surface of the chip so as to extend toward the wavelength converting layer, and a reflective material layer disposed at least between the frame and both side surfaces of the wavelength converting layer and the transparent material layer. The semiconductor light-emitting device can be configured to improve light-emitting efficiency of the chip by using the reflective material layer as a reflector, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from a small light-emitting surface.
摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer located on at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, the chip mounted on the base board and a transparent plate disposed on the wavelength converting layer including a spacer and a phosphor having a high density. The wavelength converting layer can be formed in a thin uniform thickness between the transparent plate and a top surface of the chip using the spacer so as to extend toward the transparent plate. The semiconductor light-emitting device can be configured to improve light-emitting efficiency of the chip by using the thin wavelength converting layer including the phosphor having a high density, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from a small light-emitting surface.
摘要:
There is provided a method for producing a light emitting device having a small light emitting area and showing high light extraction efficiency. An uncured resin 13′ is dropped on either one or both of a light emitting element 11 and a tabular member 14 in such an amount that the resin is maintained on them by surface tension, the light emitting element 11 and the tabular member 14 are piled up with the uncured resin 13′ maintained between them and on a side of the light emitting element by surface tension of the uncured resin 13′ to form an uncured resin layer 13′ having an inclined side 130, and then the resin layer 13 is cured. The tabular member is constituted with a material having an alkali metal oxide content of 0.2% by weight or lower.
摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer located on at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, the chip mounted on the base board and a transparent plate disposed on the wavelength converting layer including a spacer and a phosphor having a high density. The wavelength converting layer can be formed in a thin uniform thickness between the transparent plate and a top surface of the chip using the spacer so as to extend toward the transparent plate. The semiconductor light-emitting device can be configured to improve light-emitting efficiency of the chip by using the thin wavelength converting layer including the phosphor having a high density, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from a small light-emitting surface.
摘要:
There is provided a method for producing a light emitting device having a small light emitting area and showing high light extraction efficiency. An uncured resin 13′ is dropped on either one or both of a light emitting element 11 and a tabular member 14 in such an amount that the resin is maintained on them by surface tension, the light emitting element 11 and the tabular member 14 are piled up with the uncured resin 13′ maintained between them and on a side of the light emitting element by surface tension of the uncured resin 13′ to form an uncured resin layer 13′ having an inclined side 130, and then the resin layer 13 is cured. The tabular member is constituted with a material having an alkali metal oxide content of 0.2% by weight or lower.
摘要:
The disclosed subject matter includes light sources that have high use efficiency and a favorable bright distribution, and includes vehicle lamps that have both a favorable light distribution pattern and a capability of being simply composed by using the LED light sources. The light source can include a base board, at least one die bonding pad and wire bonding pad on the base board, at least one LED chip mounted on the die bonding pad and connected to respective bonding pads, and an encapsulating resin over the LED chip. The at least one LED chip can emit a uniform light with a distribution electrode on a top surface thereof and can form a favorable light distribution using a shield electrode on the top surface. The vehicle lamp can include the light source and an optical lens selected according to a kind and/or design of a vehicle lamp.
摘要:
An LED can include a pair of electrode members, and an LED chip joined to a chip mount portion disposed at the extremity of one of the pair of electrode members. The LED chip can be electrically connected to the pair of electrode members. A transparent resin portion can include a wavelength conversion material mixed therein, the transparent resin portion formed in such a manner as to surround the LED chip, wherein the LED chip is positioned offset toward one side in the transparent resin portion, and wherein the wavelength conversion material mixed in the transparent resin portion has a higher density around the LED chip within the transparent resin portion.
摘要:
A white LED light source device and an LED backlight using the white LED light source can produce, among other features, white light with sufficient luminous intensity, uniform color tone, and high luminous utilization efficiency. A light path for producing white light with favorable color mixture can be shortened. The white LED light source device can be configured to include a bluish green LED lamp which can emit bluish green light by the combination of a blue LED device and a green phosphor material and a purple LED lamp which can emit purple light by the combination of a blue LED device and a red phosphor material. The bluish green light from the bluish green LED lamp and the purple light from the purple LED lamp are subjected to additive color mixture to produce white light with a spectrum containing three primary color wavelength components.