摘要:
In a semiconductor device, a p-type base region is provided in an n−-type substrate to extend from a principal surface of the substrate in a perpendicular direction to the principal surface. An n+-type source region extends in the p-type base region from the principal surface in the perpendicular direction, and an n+-type drain region extends in the substrate separately from the p-type base region with a drift region interposed therebetween. A trench is formed to penetrate the p-type base region from the n+-type source region in a direction parallel to the principal surface. A gate electrode is formed in the trench through a gate insulating film. Accordingly, a channel region can be formed with a channel width in a depth direction of the trench when a voltage is applied to the gate electrode.
摘要翻译:在半导体器件中,p型基极区域设置在n型衬底中,以从垂直于主表面的方向从衬底的主表面延伸。 n +型源极区域在垂直方向上从主表面延伸到p型基极区域中,并且n +型漏极区域在p型基极区域中与P型基极区域分开延伸,并且其间插入漂移区域。 形成沟槽,以在平行于主表面的方向上从n +型源极区域穿透p型基极区域。 栅电极通过栅极绝缘膜形成在沟槽中。 因此,当向栅电极施加电压时,可以在沟槽的深度方向上形成沟道区域。
摘要:
In a trench-gate type power MOSFET in which a gate electrode is formed on a gate oxide layer formed on a surface of a wall defining a trench, the trench is annealed by heating, for example, at the temperature between 1050° C. and 1150° C. in a hydrogen atmosphere before the gate oxide layer is formed. The crystal defects generated in a crystal adjacent to the trench are cured by the hydrogen annealing without enlarging the trench horizontal width, so that a trench having a high aspect ratio is provided while leak current at a PN junction is prevented. In addition, the breakdown voltage of the gate oxide layer is prevented from being lowered.
摘要:
In a semiconductor device, a p-type base region is provided in an n−-type substrate to extend from a principal surface of the substrate in a perpendicular direction to the principal surface. An n+-type source region extends in the p-type base region from the principal surface in the perpendicular direction, and an n+-type drain region extends in the substrate separately from the p-type base region with a drift region interposed therebetween. A trench is formed to penetrate the p-type base region from the n+-type source region in a direction parallel to the principal surface. A gate electrode is formed in the trench through a gate insulating film. Accordingly, a channel region can be formed with a channel width in a depth direction of the trench when a voltage is applied to the gate electrode.
摘要翻译:在半导体器件中,p型基极区域设置在n型衬底中,从衬底的主表面沿垂直于主表面的方向延伸。 n +型源极区域在垂直方向上从主表面在p型基极区域中延伸,并且n +型漏极区域在p型基极区域中与p型基极区域分开延伸, 漂移区域。 形成沟槽,以在平行于主表面的方向上从n +型源极区域穿透p型基极区域。 栅电极通过栅极绝缘膜形成在沟槽中。 因此,当向栅电极施加电压时,可以在沟槽的深度方向上形成沟道区域。
摘要:
A semiconductor device has a dielectric strength for a gate oxide film at a trench bottom that is higher than that of side walls used for channels. An n+0 type substrate 1 having substrate plane orientation of (110) is prepared, and the side walls of a trench where channels are formed are in (100) planes. The other, non-channel forming, side walls of the trench are in (110) planes. Thus, the growth rate of the gate oxide film 7 in the non-channel forming side walls and the trench bottom is faster than that in the channel forming side walls. As a result, the film thickness at the non-channel-forming side walls and the trench bottom is greater than that of the channel-forming side walls. Accordingly, the device has high mobility, and there is no drop of dielectric strength due to partial reduction of the thickness of the gate oxide film 7. This achieves both a reduction of the ON resistance and an increase in the dielectric strength of the semiconductor device.
摘要:
Closure at the opening of a trench with an epitaxial film is restrained, and thereby, filling morphology in the trenches is improved. A method for manufacturing a semiconductor substrate includes a step for growing an epitaxial layer 11 on the surface of a silicon substrate 13, a step of forming a trench 14 in this epitaxial layer, and a step of filling the inside of the trench 14 with the epitaxial film 12, wherein mixed gas made by mixing halogenoid gas into silicon source gas is circulated as material gas in filling the inside of the trench with the epitaxial film, and when the standard flow rate of the halogenoid gas is defined as Xslm and the film formation speed of the epitaxial film formed by the circulation of the silicon source gas is defined as Yμm/min, in the case when the aspect ratio of the trench is less than 10, an expression Y
摘要:
Closure at the opening of a trench with an epitaxial film is restrained, and thereby, filling morphology in the trenches is improved. A method for manufacturing a semiconductor substrate includes a step for growing an epitaxial layer 11 on the surface of a silicon substrate 13, a step of forming a trench 14 in this epitaxial layer, and a step of filling the inside of the trench 14 with the epitaxial film 12, wherein mixed gas made by mixing halogenoid gas into silicon source gas is circulated as material gas in filling the inside of the trench with the epitaxial film, and when the standard flow rate of the halogenoid gas is defined as Xslm and the film formation speed of the epitaxial film formed by the circulation of the silicon source gas is defined as Yμm/min, in the case when the aspect ratio of the trench is less than 10, an expression Y
摘要:
A physical quantity detection device includes: an insulating layer; a semiconductor layer on the insulating layer; and first and second electrodes in the semiconductor layer. Each electrode has a wall part, one of which includes two diaphragms and a cover part. The diaphragms facing each other provide a hollow cylinder having an opening covered by the cover part. One diaphragm faces the other wall part or one diaphragm in the other wall part. A distance between the one diaphragm and the other wall part or the one diaphragm in the other wall part is changed with pressure difference between reference pressure in the hollow cylinder and pressure of an outside when a physical quantity is applied to the diaphragms. The physical quantity is detected by a capacitance between the first and second electrodes.
摘要:
A manufacturing method of a semiconductor substrate includes: forming a trench in a semiconductor board by a dry etching method; etching a surface portion of an inner wall of the trench by a chemical etching method so that a first damage layer is removed, wherein the surface portion has a thickness equal to or larger than 50 nanometers; and performing a heat treatment at temperature equal to or higher than 1050° C. in non-oxidizing and non-azotizing gas so that crystallinity of a second damage layer is recovered, wherein the second damage layer is disposed under the first damage layer. The crystallinity around the trench is sufficiently recovered
摘要:
A semiconductor device includes a silicon substrate having a (110)-oriented surface, a PN column layer disposed on the (110)-oriented surface, a channel-forming layer disposed on the PN column layer, a plurality of source regions disposed at a surface portion of the channel-forming layer, and gate electrodes penetrate through the channel-forming layer. The PN column layer includes first columns having a first conductivity type and second columns having a second conductivity type which are alternately arranged in such a manner that the first columns contact the second columns on (111)-oriented surfaces, respectively. The gate electrodes are adjacent to the source regions, respectively, and each of the gate electrodes has side surfaces that cross the contact surfaces of the first columns and the second columns in a plane of the silicon substrate.
摘要:
Disclosed is a legged locomotion robot which is structurally simple and is provided with a tiptoe portion in a foot at a low cost. The legged locomotion robot includes an upper body; two locomotive legs connected to the upper body through a joint; and a locomotive foot connected to a tip end of the leg through a joint; wherein the foot is provided with a foot sole serving as a ground contacting portion of the foot, a curved portion is formed at a predefined distance from a tip end of the foot sole, crossing the foot sole laterally, and the curved portion is configured to be thinner than a tiptoe portion of the foot sole.