摘要:
A stable ion-conductive polymer electrolyte for an electrolytic capacitor comprises: a polymer made up of a prepolymer which has a polyol skeletal structure including polyalkylene oxide units, at least one ammonium salt, and at least one organic solvent. The skeletal structure is exemplified as trimethylol propane, trimethylolol ethane or tetramethylol methane.
摘要:
An electrolyte for driving an electrolytic capacitor comprising an organic solvent, at least one ammonium carboxylate and, at least one solute selected from the group consisting of quaternary ammonium borates and quaternary ammonium phosphates. An electrolyte further containing a polymer is disclosed. The polymer includes a polyether polyol represented by the following formula: ##STR1## where, 1.sub.1, 1.sub.2, 1.sub.3, m.sub.1, m.sub.2, m.sub.3, n.sub.1, n.sub.2, and n.sub.3 are positive integers, and 2.ltoreq.(1.sub.1 +m.sub.1).times.n.sub.1 .ltoreq.50, 2.ltoreq.(1.sub.2 +m.sub.2).times.n.sub.2 .ltoreq.50 and 2.ltoreq.(1.sub.3 +m.sub.3).times.n.sub.3 .ltoreq.50, andR.sub.1, R.sub.2 and R.sub.3 independently represents a hydrogen atom, which may be substituted one another by the same or different isocyanate residue or acrylic residue, wherein each end of the isocyanate residue or acrylic residue may be three-dimensionally linked.
摘要:
An electrolyte of electrolytic capacitor comprises at least one ammonium salt and at least one polyether polyol having a skeletal structure represented by the formula: ##STR1## where, each of Rs independently represents a hydrogen atom, an optionally substituted isocyanate residue or acrylic residue which may be the same as or different from one another; m.sub.1, m.sub.2, m.sub.3, n.sub.1, n.sub.2 and n.sub.3 each represent a positive integer, and the ends of the isocyanate residues or the acrylic residues are 3-dimensionally linked.
摘要:
An ionic conductive polymer electrolyte including a polymer having ether type oxygen in the structure and a plasticizer is provided. The plasticizer is at least one selected from the group consisting of compounds represented by the following general Formulas IV and V:Formula IV:R.sub.1 O--(C.sub.2 H.sub.4 O).sub.n --(C.sub.3 H.sub.6 O).sub.m --Hwherein n+m is 2, 3, 4 or 5, and R.sub.1 =CH.sub.3, C.sub.2 H.sub.5, C.sub.3 H.sub.7 or C.sub.4 H.sub.9 ; andFormula V:R.sub.1 O--(C.sub.2 H.sub.4 O).sub.n --(C.sub.3 H.sub.6 O).sub.m --R.sub.2wherein n+m is 2, 3, 4, or 5 and R.sub.1 =R.sub.2 =CH.sub.3.
摘要翻译:提供了包含结构中具有醚型氧的聚合物和增塑剂的离子导电聚合物电解质。 增塑剂是选自由以下通式IV和V表示的化合物中的至少一种:式IV:R 1 O-(C 2 H 4 O)n - (C 3 H 6 O)m H,其中n + m为2,3,4或5, 且R1 = CH3,C2H5,C3H7或C4H9; 和式V:R 1 O-(C 2 H 4 O)n - (C 3 H 6 O)m -R 2其中n + m为2,3,4或5,并且R 1 = R 2 = CH 3。
摘要:
The present invention provides a gas diffusion layer for a fuel cell which has proper rigidity, is easy to handle and contributes to the improvement of the productivity of fuel cells. A method for producing a gas diffusion layer for a fuel cell including a first step of: impregnating a conductive porous substrate made of a conductive carbon fiber cloth or conductive carbon fiber felt with a first dispersion containing a first fluorocarbon resin having thermoplasticity; and baking the first conductive porous substrate at a first baking temperature of not less than the melting point of the first fluorocarbon resin and less than the decomposition temperature of the first fluorocarbon resin to enhance the rigidity of the conductive porous substrate.
摘要:
In a polymer electrolyte fuel cell including a hydrogen ion conductive polymer electrolyte membrane; a pair of electrodes composed of catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers; a conductive separator plate having a gas flow channel for supplying a fuel gas to one of the electrodes; and a conductive separator plate having a gas flow channel for supplying an oxidant gas to the other electrode, in order to bring a hydrogen ion conductive polymer electrolyte and a catalyst metal of the catalyst layers containing the hydrogen ion conductive polymer electrolyte and conductive carbon particles carrying the catalyst metal sufficiently and uniformly into contact with each other, the polymer electrolyte is provided in pores of an agglomerate structure of the conductive carbon particles. Consequently, the reaction area inside the electrodes is increased, and higher performance is exhibited.
摘要:
The present invention restores the performance of a fuel cell by: operating the cell in a loaded current mode different from that of a normal operation for a predetermined time; supplying an oxidant gas and a fuel gas to an anode and a cathode respectively and outputting a current from a cell body with the polarity being inverted; supplying a pressurized gas to at least one of the cathode and anode in an amount not less than 1.5 times as much as that in the normal operation or supplying oxygen to the cathode; or injecting a cleaning solution into the cathode and anode through a gas flow path. Consequently, it is possible to effectively restore a degraded performance of a polymer electrolyte fuel cell caused by a long operation.
摘要:
The present invention provides a fuel cell stack including a plurality of unit cells laid one upon another. Each of the unit cells includes an electrolyte, a pair of electrodes that are arranged across the electrolyte and respectively have a catalytic reaction layer, and a separator having means for feeding a supply of gaseous fuel to one of the electrodes and a supply of oxidant gas to the other of the electrodes. The separator is a laminate including a gas-tight conductive plate A and another conductive plate B having at least one slit, which continuously meanders from one end to another end of the conductive plate B. The technique of the present invention gives a compact fuel cell stack assembled by a simple process.
摘要:
The present invention provides a polymer electrolyte fuel cell stack that includes an inlet manifold that distributes supplies of the gaseous fuel, the oxidant gas, and cooling water in a sequence of lamination from a unit cell on one end of the cell laminate to a unit cell on the other end of the cell laminate and an outlet manifold that discharges exhausts of the gaseous fuel, the oxidant gas, and the cooling water in an inverted sequence of lamination from the unit cell on the other end of the cell laminate to the unit cell on the one end of the cell laminate. This configuration actualizes a small-sized, compact fuel cell stack.
摘要:
The present invention provides a polymer electrolyte fuel cell having a small-sized, light-weighted mechanism for fastening a stack of unit cells assembly. The polymer electrolyte fuel cell of the present invention includes a stack of unit cells obtained by laying a plurality of unit cells one upon another; a first end plate disposed on one end of the stack of unit cells; a second end plate arranged on the other end of the stack of unit cells; an auxiliary plate disposed at least outside the first end plate; at least one set of restraining means, each of which has a band-like shape and restrains a first member located on one end of an assembly, which includes the stack of unit cells, the first and the second end plates, and the auxiliary plate, and a second member located on the other end of the assembly to restrict separation of the first member and the second member from each other; a screw fitted in a threaded hole formed in the auxiliary plate in such a manner that an end of the screw comes into contact with the first end plate; and compressive means that generates a repulsive force to compress the stack of unit cells when the screw is fitted in the threaded hole of the auxiliary plate.