摘要:
When a primary computer is taken over to a secondary computer in a redundancy configuration computer system where booting is performed via a storage area network (SAN), a management server delivers an information collecting/setting program to the secondary computer before the user's operating system of the secondary computer is started. This program assigns a unique ID (World Wide Name), assigned to the fiber channel port of the primary computer, to the fiber channel port of the secondary computer to allow a software image to be taken over from the primary computer to the secondary computer.
摘要:
When a primary computer is taken over to a secondary computer in a redundancy configuration computer system where booting is performed via a storage area network (SAN), a management server delivers an information collection/setting program to the secondary computer before the user's operating system of the secondary computer is started. This program assigns a unique ID (World Wide Name), assigned to the fibre channel port of the primary computer, to the fibre channel port of the secondary computer to allow a software image to be taken over from the primary computer to the secondary computer.
摘要:
When a primary computer is taken over to a secondary computer in a redundancy configuration computer system where booting is performed via a storage area network (SAN), a management server delivers an information collecting/setting program to the secondary computer before the user's operating system of the secondary computer is started. This program assigns a unique ID (World Wide Name), assigned to the fiber channel port of the primary computer, to the fiber channel port of the secondary computer to allow a software image to be taken over from the primary computer to the secondary computer.
摘要:
When a primary computer is taken over to a secondary computer in a redundancy configuration computer system where booting is performed via a storage area network (SAN), a management server delivers an information collecting/setting program to the secondary computer before the user's operating system of the secondary computer is started. This program assigns a unique ID (World Wide Name), assigned to the fibre channel port of the primary computer, to the fibre channel port of the secondary computer to allow a software image to be taken over from the primary computer to the secondary computer.
摘要:
When a primary computer is taken over to a secondary computer in a redundancy configuration computer system where booting is performed via a storage area network (SAN), a management server delivers an information collection/setting program to the secondary computer before the user's operating system of the secondary computer is started. This program assigns a unique ID (World Wide Name), assigned to the fibre channel port of the primary computer, to the fibre channel port of the secondary computer to allow a software image to be taken over from the primary computer to the secondary computer.
摘要:
A silicon carbide vertical MOSFET having low ON-resistance and high blocking voltage. A first deposition film of low concentration silicon carbide of a first conductivity type is formed on the surface of a high concentration silicon carbide substrate of a first conductivity type. Formed on the first deposition film is a second deposition film that includes a high concentration gate region of a second conductivity type, with a first region removed selectively. A third deposition film is formed on the second deposition film, which includes a second region that is wider than the selectively removed first region, a high concentration source region of a first conductivity type, and a low concentration gate region of a second conductivity type. A low concentration base region of a first conductivity type is formed in contact with the first deposition film in the first and second regions.
摘要:
In a semiconductor device using a silicon carbide substrate (1), the object of the present invention is to provide a method of manufacturing a semiconductor device that is a buried channel region type transistor having hot-carrier resistance, high punch-through resistance and high channel mobility. This is achieved by using a method of manufacturing a buried channel type transistor using a P-type silicon carbide substrate that includes a step of forming a buried channel region, a source region and a drain region, a step of forming a gate insulation layer after the step of forming the buried channel region, source region and drain region, and a step of exposing the gate insulation layer to an atmosphere containing water vapor at a temperature of 500° C. or more after the step of forming the gate insulation layer. The gate insulation layer is formed by a thermal oxidation method using dry oxygen.
摘要:
The present invention is directed to an MIS type semiconductor device, including a channel layer between a semiconductor body region and a gate insulating film, the channel layer having an opposite semiconductor polarity to that of the semiconductor body region. Since Vfb of the semiconductor device is equivalent to or less than a gate rated voltage Vgcc− of the semiconductor device with respect to an OFF-polarity, density of carrier charge that is induced near the surface of the semiconductor body region is kept at a predetermined amount or less with a guaranteed range of operation of the semiconductor device.
摘要:
A semiconductor device of the present invention has a semiconductor element region 17 that is provided in part of a silicon carbide layer 3 and a guard-ring region 18 that is provided in another part of the silicon carbide layer 3 surrounding the semiconductor element region 17 when seen in a direction perpendicular to a principal surface of the silicon carbide layer 3. The semiconductor device includes: an interlayer insulation film 10 which is provided on the principal surface of the silicon carbide layer 3 in the semiconductor element region 17 and the guard-ring region 18, the interlayer insulation film 10 having a relative dielectric constant of 20 or more; a first protective insulation film 14 provided on the interlayer insulation film in the guard-ring region 18; and a second protective insulation film 15 provided on the first protective insulation film 14, wherein the first protective insulation film 14 has a linear expansion coefficient which is between a linear expansion coefficient of a material of the second protective insulation film 15 and a linear expansion coefficient of a material of the interlayer insulation film 10.
摘要:
A semiconductor element 100 including an MISFET according to the present invention is characterized by having diode characteristics in a reverse direction through an epitaxial channel layer 50. The semiconductor element 100 includes a semiconductor layer 20 of a first conductivity type, a body region 30 of a second conductivity type, source and drain regions 40 and 75 of the first conductivity type, an epitaxial channel layer 50 in contact with the body region, source and drain electrodes 45 and 70, a gate insulating film 60, and a gate electrode 65. If the voltage applied to the gate electrode of the MISFET is smaller than a threshold voltage, the semiconductor element 100 functions as a diode in which current flows from the source electrode 45 to the drain electrode 70 through the epitaxial channel layer 50. The absolute value of the turn-on voltage of this diode is smaller than that of the turn-on voltage of a body diode that is formed of the body region and the first silicon carbide semiconductor layer.