Abstract:
A collision cell has a plurality of rod electrodes arranged in opposed pairs around an axial centerline and a plurality of drag vanes arranged in the interstitial spaces between the rod electrodes. Operating the collision cell includes, applying a rod offset voltage to the rod electrodes, and varying an offset voltage applied to the drag vanes to identify a vane offset voltage with a maximum intensity for the transition. The method further includes varying a drag field by adjusting the voltages applied to drag vane terminals in opposite directions to identify a drag field value with a cross talk below a cross talk threshold, varying the vane offset voltage by adjusting the voltages applied to the drag vane terminals to maximize the intensity of the transition while preserving the drag field, and operating the collision cell at the vane offset voltage and drag field to monitor the transition.
Abstract:
A mass spectrometer system can include an ion source, a vacuum chamber; a mass analyzer within the vacuum chamber, a transfer tube between the ion source and the vacuum chamber, a transfer tube heater, and a vacuum pump. The mass spectrometer system can be configured to reduce the pump speed of the vacuum pump in response to receiving a transfer tube swap instruction; lower the temperature of the transfer tube to below a first threshold; operating the vacuum pump at the reduced pump speed while the transfer tube is replaced with a second transfer tube; heating the second transfer tube to a temperature above a pump down temperature; and increasing the pump speed of the vacuum pump after the temperature of the second transfer tube exceeds a second threshold.
Abstract:
An electron multiplier includes a series of discrete electron emissive surfaces or a continuous electron emissive resistive surface configured to provide an electron amplification chain; and a housing surrounding the series of electron emissive surfaces or the continuous electron emissive resistive surface and separating the environment inside the housing from the environment outside the housing. The housing includes an electron-transparent, gas-impermeable barrier configured to allow electrons to pass through into the housing to reach a first discrete electron emissive surface of the series of discrete electron emissive surfaces or a first portion of the continuous electron emissive resistive surface.
Abstract:
A mass spectrometry system includes an ion optics stack defining a central longitudinal axis. The ion optics stack includes a circular lens aperture of a first diameter and a circular alignment target having a second diameter. The second diameter is less than the first diameter. The circular alignment target is positioned such that when the ion optics stack is in alignment, the circular lens aperture and circular alignment target appear concentric to an unaided viewer when viewed along the central longitudinal axis of the ion optics stack.
Abstract:
A mass spectrometry system having a simplified control interface includes a processor and a memory. The memory includes instructions that when executed cause the processor to perform the steps of providing a user interface including a plurality of adjustment elements for adjusting at least one results effective parameter and at least one sample descriptive parameter; determining a plurality of instrument control parameters based on the at least one results effective parameter and the at least one sample descriptive parameter; and analyzing a sample while operating according to the plurality of instrument control parameters.
Abstract:
A mass spectrometry system having a simplified control interface includes a processor and a memory. The memory includes instructions that when executed cause the processor to perform the steps of providing a user interface including a plurality of adjustment elements for adjusting at least one results effective parameter and at least one sample descriptive parameter; determining a plurality of instrument control parameters based on the at least one results effective parameter and the at least one sample descriptive parameter; and analyzing a sample while operating according to the plurality of instrument control parameters.
Abstract:
A mass spectrometer system can include an ion source, a vacuum chamber; a mass analyzer within the vacuum chamber, a transfer tube between the ion source and the vacuum chamber, a transfer tube heater, and a vacuum pump. The mass spectrometer system can be configured to reduce the pump speed of the vacuum pump in response to receiving a transfer tube swap instruction; lower the temperature of the transfer tube to below a first threshold; operating the vacuum pump at the reduced pump speed while the transfer tube is replaced with a second transfer tube; heating the second transfer tube to a temperature above a pump down temperature; and increasing the pump speed of the vacuum pump after the temperature of the second transfer tube exceeds a second threshold.
Abstract:
A mass spectrometry system having a simplified control interface includes a processor and a memory. The memory includes instructions that when executed cause the processor to perform the steps of providing a user interface including a plurality of adjustment elements for adjusting at least one results effective parameter and at least one sample descriptive parameter; determining a plurality of instrument control parameters based on the at least one results effective parameter and the at least one sample descriptive parameter; and analyzing a sample while operating according to the plurality of instrument control parameters.
Abstract:
A method for removing deposits in a mass spectrometer ion source housing includes delivering a liquid from a liquid source to a surface within the ion source housing. The surface including an ultrasonic transducer embedded within the surface. The method further includes activating the ultrasonic transducer to ultrasonically remove the deposit.
Abstract:
An ion detector includes a first stage dynode configured to receive an ion beam and generate electrons, a photon source arranged to provide photons to the first stage dynode, the photons of sufficient energy to cause the first stage dynode to emit photoelectrons, an electron multiplier configured to receive the electrons or the photoelectrons from the first stage dynode and generate an output proportional to the number of electrons or photoelectrons, and a controller. The controller is configured to receive the output generated in response to the photoelectrons; calculate a gain curve of the detector based on the output; and set a voltage of the electron multiplier or the first stage dynode to achieve a target gain for the ion beam.