Abstract:
The present invention relates to a method to improve the activity of engineered U7 snRNAs used in the context of RNA-based therapeutics; particularly in exon skipping, exon inclusion, and mRNA eradication strategies. The resulting modified U7 snRNAs are useful for treating neuromuscular diseases, in particular Duchenne neuromuscular dystrophy, myotonic dystrophy DM1 and spinal muscular atrophy.
Abstract:
An isolated linear nucleic acid molecule comprising in this order: a first adeno-associated virus (AAV) inverted terminal repeat (ITR), a nucleotide sequence of interest and a second AAV ITR, wherein said nucleic acid molecule is devoid of AAV capsid protein coding sequences. The said nucleic acid molecule can be applied to a host at repetition without eliciting an immune response. Methods for producing and purifying this nucleic acid molecule, and use of the same for therapeutic purposes are also provided.
Abstract:
Methods for increasing the efficiency of target tissue penetration of an adeno-associated virus (AAV) vector in a patient are provided. In some aspects, the methods involve inhibiting the interaction of the serum protein galectin 3 binding protein (G3BP) with AAV vector. Further provided are methods for reducing tissue distribution of a virus or for neutralizing a virus harbored by an organ destined for transplant, or newly transplanted, by administering a composition comprising G3BP.
Abstract:
A system (10) for removing a pipettable substance from a pre-filled container (20), which is closed off by a top (30) having at least one opening area (40), comprises an opening tool (100) having a tube (110), which has a cross-section corresponding substantially to the shape of the opening area and which comprises at a distal end (120) an endpiece (140) extending substantially obliquely relative to the longitudinal axis of the tube, which moves a part of the top (30) located inside the opening area (40) towards the container when the opening tool is applied, so as to form an opening in the top, and a point of attack (150) for a transporting tool (200). The opening tool (100) is designed to remain on the container (20) after use. Moreover, the system comprises a transporting tool (200) for moving the opening tool (100) through the lid, and a cannula (250), which is adapted to be inserted over at least part of its length through the tube (110) into the interior of the container (20), in the position of use of the opening tool (100), and one end of which can be connected to a suction device (300) for sucking a pipettable substance out of the interior of the container (20).
Abstract:
The present invention relates to a method to improve the activity of engineered U7 snRNAs used in the context of RNA-based therapeutics; particularly in exon skipping, exon inclusion, and mRNA eradication strategies. The resulting modified snRNAs are useful for treating neuromuscular diseases, in particular Duchenne neuromuscular dystrophy, myotonic dystrophy DM1 and spinal muscular atrophy.
Abstract:
Provided are tricyclo-DNA (tc-DNA) AON and methods employing tc-DNA AON for modifying splicing events that occur during pre-mRNA processing. Tricyclo-DNA (tc-DNA) AON are described that may be used to facilitate exon skipping or to mask intronic silencer sequences and/or terminal stem-loop sequences during pre-mRNA processing and to target RNase-mediated destruction of processed mRNA. Tc-DNA AON described herein may be used in methods for the treatment of Duchenne Muscular Dystrophy by skipping a mutated exon 23 or exon 51 within a dystrophin gene to restore functionality of a dystrophin protein; in methods for the treatment of Spinal Muscular Atrophy by masking an intronic silencing sequence and/or a terminal stem-loop sequence within an SMN2 gene to yield modified functional SMN2 protein, including an amino acid sequence encoded by exon 7, which is capable of at least partially complementing a non-functional SMN1 protein; and in methods for the treatment of Steinert's Myotonic Dystrophy by targeting the destruction of a mutated DM1 mRNA comprising 3′-terminal CUG repeats.
Abstract:
A system for monitoring the state of a disease or the state of a person using a biomarker, the system comprising: a motion data obtaining unit configured to obtain from at least one motion sensor motion data from a person having the disease, a generating unit configured to generate a value of the biomarker of the disease based on the obtained motion data, and an assessing unit configured to assess the value of the biomarker of the disease and, based on the assessment, to output information related to the state of the disease or state of a person
Abstract:
Fluid processing tube for use in optical analysis comprising at least one first portion being made from a first material suitable for optical analysis and being configured to include two optical paths of different lengths, and at least one second portion connected to said first portion and being made from a second material different from said first material.
Abstract:
Methods for increasing the efficiency of target tissue penetration of an adeno-associated virus (AAV) vector in a patient are provided. In some aspects, the methods involve inhibiting the interaction of the serum protein galectin 3 binding protein (G3BP) with AAV vector. Further provided are methods for reducing tissue distribution of a virus or for neutralizing a virus harbored by an organ destined for transplant, or newly transplanted, by administering a composition comprising G3BP.
Abstract:
The invention relates to a sample container, comprising a housing which forms a sample space for receiving a sample and has at least one circular opening which extends in a channel-shaped manner into the sample space, and further comprising a spherical closing element, wherein the diameter of the closing element only exceeds the diameter of the opening channel in at least one (closing) portion to such an extent that the closing element can be fixed in a force-locked manner by its largest circumference in the closing portion, wherein the spherical closing element is in contact with the housing, and the opening channel between the closing portion and the inner opening forms a protrusion which reduces the opening cross section of the opening channel with respect to the opening cross section in the closing portion.