摘要:
Various new and non-obvious apparatus and methods for using frame caching to improve packet loss recovery are disclosed. One of the disclosed embodiments is a method for using periodical and synchronized frame caching within an encoder and its corresponding decoder. When the decoder discovers packet loss, it informs the encoder which then generates a frame based on one of the shared frames stored at both the encoder and the decoder. When the decoder receives this generated frame it can decode it using its locally cached frame.
摘要:
At high bit rates, the reconstruction error of compressed video is generally proportional to the squared value of quantization step size, such that full quantization step size increments at high bit rates can lead to significant change in the reconstruction error and/or bit rate of the compressed video. A video codec uses fractional increments of quantization step size at high bit rates to permit a more continuous variation of quality and/or bit rate as the quantization scale changes. For high bit rate scenarios, the bit stream syntax includes an additional syntax element to specify fractional step increments (e.g., half step) of the normal quantizer scale step sizes.
摘要:
A video codec efficiently signals that a frame is identical to its reference frame, such that separate coding of its picture content is skipped. Information that a frame is skipped is represented jointly in a coding table of a frame coding type element for bit rate efficiency in signaling. Further, the video codec signals the picture type (e.g., progressive or interlaced) of skipped frames, which permits different repeat padding methods to be applied according to the picture type.
摘要:
A video codec provides efficient repeat padding of hybrid video sequences having arbitrary video resolution. The video codec repeat pads to expand the active content of pictures in the video sequence out to meet an adaptive vertical macroblock alignment restriction that varies by picture type. For progressive type pictures, the video codec repeats the last row or horizontal boundary edge of the active content. For interlaced type pictures, the video coded repeats the last two rows (last row of each interlaced field) of the active content. This repeat padding differing by picture type provides a better prediction (lower prediction error residual) for macroblocks in following predicted frames whose motion vector points into the padded region.
摘要:
Techniques and tools for escape mode code resizing are described. For example, a video decoder receives encoded information (e.g., runs, levels) for transform coefficients of blocks. For at least some of the encoded information, the decoder decodes in an escape mode for which codes have sizes signaled on a sub-frame basis (e.g., on a per-interlaced field basis in a video frame, or on a per-slice basis in a video frame). A video encoder performs corresponding encoding and signaling.
摘要:
Techniques and tools for encoding and decoding motion vector information for video images are described. For example, a video encoder yields an extended motion vector code by jointly coding, for a set of pixels, a switch code, motion vector information, and a terminal symbol indicating whether subsequent data is encoded for the set of pixels. In another aspect, an encoder/decoder selects motion vector predictors for macroblocks. In another aspect, a video encoder/decoder uses hybrid motion vector prediction. In another aspect, a video encoder/decoder signals a motion vector mode for a predicted image. In another aspect, a video decoder decodes a set of pixels by receiving an extended motion vector code, which reflects joint encoding of motion information together with intra/inter-coding information and a terminal symbol. The decoder determines whether subsequent data exists for the set of pixels based on e.g., the terminal symbol.
摘要:
Techniques and tools for encoding and decoding motion vector information for video images are described. For example, a video encoder yields an extended motion vector code by jointly coding, for a set of pixels, a switch code, motion vector information, and a terminal symbol indicating whether subsequent data is encoded for the set of pixels. In another aspect, an encoder/decoder selects motion vector predictors for macroblocks. In another aspect, a video encoder/decoder uses hybrid motion vector prediction. In another aspect, a video encoder/decoder signals a motion vector mode for a predicted image. In another aspect, a video decoder decodes a set of pixels by receiving an extended motion vector code, which reflects joint encoding of motion information together with intra/inter-coding information and a terminal symbol. The decoder determines whether subsequent data exists for the set of pixels based on e.g., the terminal symbol.
摘要:
A video codec provides for encoding and decoding pictures of a video sequence at various coded resolutions, such that pictures can be encoded at lower coded resolutions based on bit rate or other constraints while maintaining a consistent display resolution. The video codec further provide for encoding and decoding pictures of the video sequence at ranges lower than that used for display, and then expanding the range after decoding for display. The video codec applies post-processing operations, such as de-blocking, de-ringing, and color conversion, at the native resolution and range of the decoded video, prior to range expansion and upsampling for display.
摘要:
Techniques and tools for hybrid motion vector prediction for interlaced forward-predicted fields are described. For example, a video decoder determines an initial motion vector predictor for a motion vector of an interlaced forward-predicted field. The decoder then checks a variation condition based at least in part on a predictor polarity selection (e.g., same or opposite), the initial motion vector predictor, and neighbor motion vectors. If the variation condition is satisfied, the decoder uses one of the neighbor motion vectors as a final motion vector predictor. Otherwise, the decoder uses the initial motion vector predictor as the final motion vector predictor. A video encoder performs corresponding processing.
摘要:
With intelligent differential quantization, a video codec intelligently quantizes video at differing strength levels within a frame, such as on a macroblock (MB) or a group of MB basis. This allows the codec to control bit usage on a finer granularity than a frame to meet hardware constraints, as well as providing perceptual optimization by coarsely quantizing unimportant regions, while finely quantizing important regions within a frame. The intelligent differential quantization uses motion information gathered from encoding and analysis of the video to classify the importance of different regions of the image, and quantizes the regions accordingly. In addition, the intelligent differential quantization include efficient signaling of information as to the differential quantization strengths in the compressed bit stream.