摘要:
A test key for validating the doping concentration of buried layers within a deep trench capacitor. The test key is deposited in the scribe line region of a wafer. In the test key of the present invention, the deep trench capacitor is deposited in the scribe line region and has three buried layers of three doping concentrations. An isolation region is deposited in the capacitor, and a first plug, a second and a third plug are coupled to three positions of one buried layer of the three respectively. The present invention determines whether the doping concentration of buried layers within a deep trench capacitor is valid by a first resistance measured between the first plug and the second plug and a second resistance measured between the second plug and the third plug.
摘要:
A test structure and a test method for determining misalignment occurring in integrated circuit manufacturing processes are provided. The test structure includes a first conductive layer having a first testing structure and a second testing structure, a dielectric layer thereon, and a second conductive layer on the dielectric layer. The second conductive layer includes a third testing structure and a fourth testing structure, which respectively overlap a portion of the first testing structure and the second testing structure in a first direction and a second direction. The first direction is opposite to the second direction. The method includes a step of measuring the electrical characteristic between the first and the second conductive layers to calculate an offset amount caused by the misalignment.
摘要:
A test structure and a test method for determining misalignment occurring in integrated circuit manufacturing processes are provided. The test structure includes a first conductive layer having a first testing structure and a second testing structure, a dielectric layer thereon, and a second conductive layer on the dielectric layer. The second conductive layer includes a third testing structure and a fourth testing structure, which respectively overlap a portion of the first testing structure and the second testing structure in a first direction and a second direction. The first direction is opposite to the second direction. The method includes a step of measuring the electrical characteristic between the first and the second conductive layers to calculate an offset amount caused by the misalignment.
摘要:
Method for detecting whether the alignment of bit line contacts and active areas in DRAM devices is normal, and a test device thereof. In the present invention a plurality of memory cells are formed in the memory area and at least one test device is formed in the scribe line region simultaneously. A first resistance and a second resistance are detected by the test device. Normal alignment of the bit line and the bar-type active area of the test device is determined according to the first resistance and the second resistance. Finally, whether the alignment of the bit line contacts and the active areas in memory areas is normal is determined according to whether the alignment of the bit line contact and bar-type active area of the test device is normal.
摘要:
A test key for validating the position of a word line structure overlaying a deep trench capacitor of a DRAM. The test key is deposited in the scribe line region of a wafer. The deep trench capacitor is deposited in the scribe line region and has a buried plate. A rectangular word line is deposited in the scribe line and covers a portion of the deep trench capacitor, and two passing word lines are deposited above the deep trench. A first doping region and a second doping region are deposited between the rectangular word line and the first passing word line and between the rectangular word line and the second passing word line respectively. A first plug, a second plug and a third plugs are coupled to the first doping region, the second doping region and the buried plate respectively.
摘要:
A test device and method for detecting alignment of active areas and memory cell structures in DRAM devices with vertical transistors. In the test device, parallel first and second memory cell structures disposed in the scribe line region, each has a deep trench capacitor and a transistor structure. An active area is disposed between the first and second memory cell structures. The active area overlaps the first and second memory cell structures by a predetermined width. First and second conductive pads are disposed on both ends of the first memory cell structures respectively, and third and fourth conductive pads are disposed on both ends of the first memory cell structures respectively.
摘要:
A test structure of a DRAM array includes a substrate. A transistor is formed on the substrate and has a first region and a second region as source/drain regions thereof. A deep trench capacitor is formed adjacent to the transistor and has a first width. A shallow trench isolation is formed in a top portion of the deep trench capacitor and has a second width. The second width is substantially shorter than the first one. A third region is formed adjacent to the deep trench capacitor. A first contact is formed on the substrate and contacts with the first region. A second contact is formed on the substrate and contacts with the third region.
摘要:
A method and device for detecting alignment of bit lines and bit line contacts in DRAM devices. In the present invention, the test device is disposed in the scribe line region and is formed by the same masks and process as the bit lines and bit line contacts in the memory regions simultaneously. The memory deices and test may have the same alignment shift between bit line contacts and bit line due to use of the same masks and process. Thus, alignment of bit lines and bit line contacts in the memory region is determined according to two resistances (R1 and R2) detected by the test device. Further, the alignment shift can be obtained by Δ W = R MO × L × ( 1 R 1 - 1 R 2 ) , wherein RMO is the resistance per surface area of the bit lines, and L is the length of the bar-type bit line contacts in the test device.
摘要:
A test device and method for detecting alignment of active areas and memory cell structures in DRAM devices with vertical transistors. In the test device, parallel first and second memory cell structures disposed in the scribe line region, each has a deep trench capacitor and a transistor structure. An active area is disposed between the first and second memory cell structures. The active area overlaps the first and second memory cell structures by a predetermined width. First and second conductive pads are disposed on both ends of the first memory cell structures respectively, and third and fourth conductive pads are disposed on both ends of the first memory cell structures respectively.
摘要:
Method for detecting whether the alignment of bit line contacts and active areas in DRAM devices is normal, and a test device thereof. In the present invention a plurality of memory cells are formed in the memory area and at least one test device is formed in the scribe line region simultaneously. A first resistance and a second resistance are detected by the test device. Normal alignment of the bit line and the bar-type active area of the test device is determined according to the first resistance and the second resistance. Finally, whether the alignment of the bit line contacts and the active areas in memory areas is normal is determined according to whether the alignment of the bit line contact and bar-type active area of the test device is normal.