Abstract:
An object detecting apparatus for detecting an object by a plurality of radars, with improved accuracy of identity determination and acquisition of position information in fusion of detection results. The object detecting apparatus is arranged to obtain a moving path of a detected point by a radar and to perform pairing as follows: if a detected point by a radar exists in a region based on the moving path and if a relative velocity thereof is matched with that of the detected point of interest, the detected point is paired as a corresponding detected point.
Abstract:
An object detecting apparatus for detecting an object by a plurality of radars, with improved accuracy of identity determination and acquisition of position information in fusion of detection results. The object detecting apparatus is arranged to obtain a moving path of a detected point by a radar and to perform pairing as follows: if a detected point by a radar exists in a region based on the moving path and if a relative velocity thereof is matched with that of the detected point of interest, the detected point is paired as a corresponding detected point.
Abstract:
In a collision surface determination computing section 27, a collision prediction ECU 2 selects a surface of an own vehicle where an opponent vehicle collides when the own vehicle and opponent vehicle collide with each other. A vehicle track intersection computing section 29 calculates an intersection between the own vehicle and the opponent vehicle. According to the intersection between the own vehicle and opponent vehicle and respective times when the own vehicle and opponent vehicle reach the intersection, a collision determining section 30 determines whether the own vehicle and opponent vehicle collide with each other or not. When it is determined that the own vehicle and opponent vehicle collide with each other, a collision position computing section 32 calculates a collision position of the own vehicle where the opponent vehicle collides according to the collision surface selected in the collision surface determination computing section 27.
Abstract:
In a collision surface determination computing section 27, a collision prediction ECU 2 selects a surface of an own vehicle where an opponent vehicle collides when the own vehicle and opponent vehicle collide with each other. A vehicle track intersection computing section 29 calculates an intersection between the own vehicle and the opponent vehicle. According to the intersection between the own vehicle and opponent vehicle and respective times when the own vehicle and opponent vehicle reach the intersection, a collision determining section 30 determines whether the own vehicle and opponent vehicle collide with each other or not. When it is determined that the own vehicle and opponent vehicle collide with each other, a collision position computing section 32 calculates a collision position of the own vehicle where the opponent vehicle collides according to the collision surface selected in the collision surface determination computing section 27.
Abstract:
An approaching vehicle detecting system that detects an approaching vehicle on the basis of sounds collected by a plurality of sound collectors mounted on a host vehicle determines whether a transverse moving direction of a sound source detected by the plurality of sound collectors is a direction approaching the host vehicle, determines whether a vertical position of the sound source detected using the plurality of sound collectors is in the same plane as that of the host vehicle, and detects that sound source as the approaching vehicle when it is determined that the transverse moving direction of the sound source is the direction approaching the host vehicle and the vertical position of the sound source is in the same plane as that of the host vehicle.
Abstract:
Provided is a device for detecting sound outside vehicle capable of detecting sounds outside the vehicle with high accuracy in various surrounding environments.A sound source direction detecting ECU 1 acquires sound collection information about sounds outside a vehicle which are collected by microphones 2A to 2G. The sound source direction detecting ECU 1 acquires traveling road information about the vicinity of a host vehicle on the basis of the acquired sound collection information. When the traveling road information is acquired, the sound source direction detecting ECU 1 adjusts the sound collection characteristics of the microphones 2A to 2G on the basis of the traveling road information.
Abstract:
A parking assist device for assisting parking operation to a target parking position includes an initial position setting device for setting an initial position of the target parking position to park a vehicle, a designation display showing the target parking position, a display position calculation device for calculating an initial display position of the designation display showing the target parking position at a screen showing vehicle surroundings based on the initial position determined by the initial position setting device, and an initial display position shifting device for shifting the initial display position of the designation display to a position within a display range on the screen in case the initial display position calculated by the display position calculation device is positioned outside of the display range on the screen.
Abstract:
A method for performing a parking assist control for automatically guiding a vehicle to a target parking position includes the steps of calculating a change of a vehicle direction based on a traveling distance of the vehicle and a steering angle obtained by a steering angle sensor, calculating the change of the vehicle direction based on a yaw rate obtained by a yaw rate sensor, and determining whether or not the parking assist control is required to be stopped based on a result of a comparison between the calculated changes of the vehicle direction.
Abstract:
A parking-assist device for an automotive vehicle comprises an imaging unit which creates an image of an exterior behind the vehicle. A target-parking-position input unit inputs a target parking position to park the vehicle when requested. A target-parking-position memory access unit stores the target parking position and reads the stored target parking position when requested. A vehicle-travel-amount detection unit detects an amount of travel of the vehicle. A parking-route determining unit calculates a parking route from a current position of the vehicle to the target parking position. A display unit displays the created image and displays one of the target parking position inputted and the stored target parking position read on the created image in a superimposed manner.
Abstract:
A vehicle backward movement assist device includes a vehicle path determining means for determining a path from a current position of the vehicle moved at a moving amount detected by a vehicle moving amount detecting means to a first target position or a second target position, the vehicle path determining means determining the path by repeatedly calculating the path, and a displaying means for displaying an image of a rear view from a captured by an image capturing means, the displaying means superimposing the first or second target position of the vehicle moved based upon the first or second target position and the detected moving amount on the image of the rear view from the vehicle, the second target position calculated by updating the first target position.