Abstract:
A method for fabricating semiconductor package structure is disclosed. The method includes: providing a wafer having a front side and a backside; forming a plurality of through-silicon vias (TSVs) in the wafer and a plurality of metal interconnections on the TSVs, in which the metal interconnections are exposed from the front side of the wafer; performing a monitoring step to screen for TSV failures from the backside of the wafer; and bonding the wafer to a substrate.
Abstract:
The present invention provides a flash cell structure and a method of fabricating the same. The flash cell structure includes a semiconductor substrate, a stacked gate structure disposed on the semiconductor substrate, a first doped region disposed in the semiconductor substrate at a side of the stacked gate structure, a first dielectric layer, a second dielectric layer, and an erase gate. The stacked gate structure includes a floating gate insulated from the semiconductor substrate and a control gate disposed on the floating gate and insulated from the floating gate. The first dielectric layer is disposed on a sidewall of the floating gate. The second dielectric layer is disposed on the first doped region. A thickness of the first dielectric layer is less than a thickness of the second dielectric layer.
Abstract:
A method of manufacturing through-silicon-via (TSV) including the steps of sequentially forming a liner layer and a metal layer in a TSV hole, performing a chemical mechanical polishing process to remove the metal layer on the substrate so that the remaining metal layer in the TSV hole becomes a TSV, and forming a cap layer on the substrate without performing a NH3 treatment.
Abstract:
A method of fabricating a floating gate includes providing a substrate divided into a cell region and a logic region. A silicon oxide layer and a silicon nitride layer cover the cell region and the logic region. Numerous STIs are formed in the silicon nitride layer, the silicon oxide layer, and the substrate. Later, the silicon nitride layer within the cell region is removed to form one recess between the adjacent STIs within the cell region while the silicon nitride layer within the logic region remains. Subsequently, a conductive layer is formed to fill the recess. The conductive layer is thinned to form a floating gate.
Abstract:
A method of fabricating a floating gate includes providing a substrate divided into a cell region and a logic region. A silicon oxide layer and a silicon nitride layer cover the cell region and the logic region. Numerous STIs are formed in the silicon nitride layer, the silicon oxide layer, and the substrate. Later, the silicon nitride layer within the cell region is removed to form one recess between the adjacent STIs within the cell region while the silicon nitride layer within the logic region remains. Subsequently, a conductive layer is formed to fill the recess. The conductive layer is thinned to form a floating gate.
Abstract:
A method of fabricating a through silicon via structure includes the following steps. At first, a substrate is provided, and a dielectric layer is formed on the substrate. Subsequently, at least one first opening is formed in the dielectric layer, and the substrate exposed by the first opening is partially removed to form at least one via opening. A conductive material layer is then formed to fill the via opening and the first opening, and the conductive material layer is planarized.