Abstract:
This present disclosure relates to processes and apparatuses for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene methylation within an aromatics complex for producing paraxylene wherein an embodiment uses a riser reactor, another embodiment uses a pre-reactor producing dimethyl ether, and another embodiment uses partial regeneration of the catalyst.
Abstract:
Surface-modified zeolites and methods for preparing surface-modified zeolites are provided. A hybrid polymer formed from a silicon alkoxide and a metal alkoxide, a co-monomer, or both, is contacted with a zeolite suspension. The zeolite suspension comprises a sodium-, an ammonium-, or a hydrogen-form zeolite and a solvent. The hybrid polymer and zeolite suspension are contacted under conditions sufficient to deposit hybrid polymer on external surfaces of the zeolite to form a treated zeolite. Solvent is removed therefrom. The treated zeolite is dried and calcinated to form a dried and calcinated treated zeolite. Forming of the zeolite suspension and the contacting, removing, drying, and calcinating steps are provided in one selectivation sequence to produce a surface-modified zeolite from the ammonium-form zeolite and the hydrogen-form zeolite. If the dried and calcinated treated zeolite is a sodium-form zeolite, the sodium is exchanged with ammonium and then additionally dried and calcinated.
Abstract:
This present disclosure relates to processes and apparatuses for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene methylation within an aromatics complex for producing paraxylene wherein an embodiment uses a riser reactor, another embodiment uses a pre-reactor producing dimethyl ether, and another embodiment uses partial regeneration of the catalyst.
Abstract:
Methods and apparatus for processing hydrocarbons are provided. In one example, a method for processing hydrocarbons includes the step of providing feed stream including toluene, ethylbenzene, mixed xylenes, and C9 hydrocarbons. Ethylbenzene is present in the feed stream in an amount of at least about 20% by weight of total C8 aromatic hydrocarbons present in the feed stream. The method further includes the step of subjecting the feed stream to ethylbenzene conversion to form a benzene-containing product stream that includes benzene.
Abstract:
A method of operating a continuous or semi-continuous system for a catalyst regeneration process. The system comprises a regenerator, the regenerator comprising a combustion zone and a halogenation zone. The catalyst is fed into the regenerator. A circulating regeneration gas is introduced into a regenerator circuit including oxygen, the circulating regeneration gas having a nitrogen concentration that is less than air. Oxygen from the circulating regeneration gas reacts with the coke to provide water and carbon dioxide. Water and the carbon dioxide formed in this first reaction then further react with the coke to form carbon monoxide and hydrogen.
Abstract:
A method of operating a continuous or semi-continuous system for a catalyst regeneration process. The system comprises a regenerator, the regenerator comprising a combustion zone and a halogenation zone. The catalyst is fed into the regenerator. A circulating regeneration gas is introduced into a regenerator circuit including oxygen, the circulating regeneration gas having a nitrogen concentration that is less than air. Oxygen from the circulating regeneration gas reacts with the coke to provide water and carbon dioxide. Water and the carbon dioxide formed in this first reaction then further react with the coke to form carbon monoxide and hydrogen.
Abstract:
Processes and apparatuses for alkylating aromatic hydrocarbons with an alkylating reagent to produce an alkylated aromatic product are described. The processes and apparatuses use a riser reactor operated at a superficial velocity of 10 m/s to 25 m/s to produce the alkylated aromatic product. In some embodiments, a combination of steam and aromatic hydrocarbon is used to lift the catalyst.
Abstract:
Processes and apparatuses for alkylating aromatic hydrocarbons with an alkylating reagent to produce an alkylated aromatic product are described. The processes and apparatuses use a riser reactor operated at a superficial velocity of 10 m/s to 25 m/s to produce the alkylated aromatic product. In some embodiments, a combination of steam and aromatic hydrocarbon is used to lift the catalyst.
Abstract:
This present disclosure relates to processes and apparatuses for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene methylation within an aromatics complex for producing paraxylene wherein an embodiment uses a riser reactor, another embodiment uses a pre-reactor producing dimethyl ether, and another embodiment uses partial regeneration of the catalyst.
Abstract:
Methods and apparatus for processing hydrocarbons are provided. In one example, a method for processing hydrocarbons includes the step of providing feed stream including toluene, ethylbenzene, mixed xylenes, and C9 hydrocarbons. Ethylbenzene is present in the feed stream in an amount of at least about 20% by weight of total C8 aromatic hydrocarbons present in the feed stream. The method further includes the step of subjecting the feed stream to ethylbenzene conversion to form a benzene-containing product stream that includes benzene.