Abstract:
A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a patterned mask on the buffer layer; using the patterned mask to remove the buffer layer for forming ridges and a damaged layer on the ridges; removing the damaged layer; forming a barrier layer on the ridges; and forming a p-type semiconductor layer on the barrier layer.
Abstract:
A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a patterned mask on the buffer layer; using the patterned mask to remove the buffer layer for forming ridges and a damaged layer on the ridges; removing the damaged layer; forming a barrier layer on the ridges; and forming a p-type semiconductor layer on the barrier layer.
Abstract:
A method of forming a semiconductor device includes the following steps. A substrate is provided, and the substrate has a first region. A barrier layer is then formed on the first region of the substrate. A first work function layer is formed on the barrier layer. An upper half portion of the first work function layer is converted into a non-volatile material layer. The non-volatile material layer is removed and a lower half portion of the first work function layer is kept.
Abstract:
A semiconductor device comprises a substrate, a gate structure and a gate spacer. The substrate has a semiconductor fin protruding from a surface of the substrate. The gate structure is disposed on the semiconductor fin. The gate spacer is disposed on sidewalls of the gate structure, wherein the gate spacer comprises a first material layer and a second material layer stacked with each other and both of these two material layers are directly in contact with the gate structure.
Abstract:
A method of forming a FinFET device includes following steps. First of all, a fin shaped structure is formed on a substrate. Then, a portion of the fin shaped structure is removed to form a first trench in the fin shaped structure. Next, a cover film is formed to partially cover surfaces of the first trench and to expose a portion of the fin shaped structure. Afterward, the exposed portion of the fin shaped structure is further removed to form a second trench under the first trench. Finally, a barrier layer is formed on surfaces of the second trench, thereby improving the current leakage issues.
Abstract:
A fin field effect transistor (FinFET) with improved electrical performance and a method of manufacturing the same are disclosed. A FinFET includes a substrate having a top surface and an insulation. At least a recessed fin is extended upwardly from the top surface of the substrate, and at least a gate stack is formed above the substrate, wherein the gate stack is extended perpendicularly to an extending direction of the recessed fin, and the recessed fin is outside the gate stack. The insulation includes a lateral portion adjacent to the recessed fin, and a central portion contiguous to the lateral portion, wherein a top surface of the lateral portion is higher than a top surface of the central portion. A top surface of the recessed fin is lower than the top surface of the central portion of the insulation.
Abstract:
An etching method includes forming a high density structure and a low density structure on a substrate. A first material layer is formed to cover both structures. Part of the low density structure is exposed through the first material layer. A second material layer is formed to cover the first material layer. The second material layer is etched to remove the second material layer on the high density structure and part of the second material layer on the low density structure. The first material layer on the high density structure and the second material layer on the low density structure are simultaneously etched. The first material layer is etched to expose a first portion of the high density structure and a second portion of the low density structure. Finally, the first portion and the second portion are removed.
Abstract:
A semiconductor device comprises a substrate, a gate structure and a gate spacer. The substrate has a semiconductor fin protruding from a surface of the substrate. The gate structure is disposed on the semiconductor fin. The gate spacer is disposed on sidewalls of the gate structure, wherein the gate spacer comprises a first material layer and a second material layer stacked with each other and both of these two material layers are directly in contact with the gate structure.
Abstract:
An epitaxial process includes the following step for forming a fin-shaped field effect transistor. A plurality of fin structures are formed on a substrate and a passivation layer is formed on the substrate between the fin structures. An epitaxial structure is formed on each of the fin structures. The present invention also provides an epitaxial structure formed by said epitaxial process. The epitaxial structure includes a plurality of fin structures, a passivation layer and an epitaxial structure. The fin structures are located on a substrate. The passivation layer is disposed on the substrate between the fin structures. The epitaxial structure is disposed on each of the fin structures.
Abstract:
A high electron mobility transistor (HEMT) includes a buffer layer on a substrate, ridges extending along a first direction on the buffer layer, gaps extending along the first direction between the ridges, a p-type semiconductor layer extending along a second direction on the ridges and inserted into the gaps, and a source electrode and a drain electrode adjacent to two sides of the p-type semiconductor layer. Preferably, the source electrode and the drain electrode are extending along the second direction and directly on top of the ridges.