Abstract:
A memory cell includes a substrate. A first STI and a second STI are embedded within the substrate. The first STI and the second STI extend along a first direction. An active region is disposed on the substrate and between the first STI and the second STI. A control gate is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. A tunneling region is disposed in the active region overlapping the active region. A first trench is embedded within the tunneling region. Two second trenches are respectively embedded within the first STI and the second STI. The control gate fills in the first trench and the second trenches. An electron trapping stack is disposed between the tunneling region and the control gate.
Abstract:
A semiconductor integrated device and a method of forming the same, the semiconductor integrated device includes a substrate, at least one shallow trench isolation, a memory cell device and a poly-insulator-poly capacitor. A capacitor region and a memory cell region are defined on the substrate. The at least one shallow trench isolation is formed in the substrate. The memory cell device is disposed on the at least one shallow trench isolation in the memory cell region and includes a double polysilicon gate. The poly-insulator-poly capacitor is disposed on the at least one shallow trench isolation in the capacitor region, wherein the poly-insulator-poly capacitor directly contacts the at least one shallow trench isolation.
Abstract:
A manufacturing method of a gate structure includes the following steps. A semiconductor substrate is provided. An isolation structure is formed in the semiconductor substrate and surrounds an active region in the semiconductor substrate. A gate pattern is formed on the active region and the isolation structure. The gate pattern includes a first gate structure and a first capping layer disposed on the first gate structure. A part of the first capping layer located above an interface between the active region and the isolation structure is removed for exposing a part of the first gate structure located above the interface between the active region and the isolation structure. A removing process is performed for reducing a thickness of the part of the first gate structure located above the interface between the active region and the isolation structure.
Abstract:
A semiconductor device includes a substrate having a high-voltage (HV) region; HV gate structures formed in the HV region of the substrate; a HV dummy pattern disposed in the HV region, and the HV dummy pattern comprising at least a semiconductor portion and a dummy HM stack disposed on the semiconductor portion, wherein a height (hS) of the semiconductor portion of the HV dummy pattern is smaller than a height (hHV-g) of a HV gate electrode of one of the HV gate structures.
Abstract:
A manufacturing method of an integrated circuit includes following steps. A dummy gate with a first mask structure formed thereon and a semiconductor gate with a second mask structure formed thereon are formed on a substrate. A top surface of the semiconductor gate is lower than a top surface of the dummy gate. A first removing process is performed to remove the first mask structure and a part of the second mask structure. A dielectric layer is formed covering the dummy gate, the semiconductor gate, and the second mask structure. A second removing process is performed to remove the dielectric layer above the dummy gate. The dummy gate is removed for forming a trench. A metal gate structure is formed in the trench. The semiconductor gate is covered by the second mask structure during the second removing process and the step of removing the dummy gate.
Abstract:
A semiconductor device includes a substrate having a high-voltage (HV) region; HV gate structures formed in the HV region of the substrate; a HV dummy pattern disposed in the HV region, and the HV dummy pattern comprising at least a semiconductor portion and a dummy HM stack disposed on the semiconductor portion, wherein a height (hS) of the semiconductor portion of the HV dummy pattern is smaller than a height (hHV-g) of a HV gate electrode of one of the HV gate structures.
Abstract:
A method for manufacturing an integrated circuit includes following steps. A substrate including a memory region and a core region is provided. At least two semiconductor word lines, two memory cells in between the two semiconductor word lines, and a semiconductor gate in between the two memory cells are formed in the memory region. A transistor device including a dummy gate is formed in the core region, and a height of the dummy gate is larger than a height of the semiconductor word lines. A protecting layer is formed on the semiconductor word lines, the memory cells, the semiconductor gate and the transistor device. A portion of the protecting layer is removed to expose the dummy gate and followed be removing the dummy gate to form a gate trench in the transistor device. Then a metal gate is formed in the gate trench.
Abstract:
A semiconductor integrated device and a method of forming the same, the semiconductor integrated device includes a substrate, at least one shallow trench isolation, a memory cell device and a poly-insulator-poly capacitor. A capacitor region and a memory cell region are defined on the substrate. The at least one shallow trench isolation is formed in the substrate. The memory cell device is disposed on the at least one shallow trench isolation in the memory cell region and includes a double polysilicon gate. The poly-insulator-poly capacitor is disposed on the at least one shallow trench isolation in the capacitor region, wherein the poly-insulator-poly capacitor directly contacts the at least one shallow trench isolation.
Abstract:
A memory structure including a substrate, charge storage layers, and a gate is provided. The charge storage layers are located on the substrate. The gate is located on the substrate on one side of the charge storage layers. The gate extends along a first direction. The gate has a protruding portion protruding along a second direction. The second direction intersects the first direction. The protruding portion is located between two adjacent charge storage layers arranged along the first direction.
Abstract:
A semiconductor structure includes a substrate. The substrate is divided into a first element region, a second element region and a boundary region. The boundary region is disposed between the first element region and a second element region. A first mask structure covers the first element region. A second mask structure is disposed in the second element region. A logic gate structure is disposed within the second element region.