摘要:
A fabricating method of a stop layer includes providing a substrate. The substrate is divided into a memory region and a peripheral circuit region. Two conductive lines are disposed within the peripheral circuit region. Then, an atomic layer deposition is performed to form a silicon nitride layer to cover the conductive lines. Later, after forming the silicon nitride layer, a silicon carbon nitride layer is formed to cover the silicon nitride layer. The silicon carbon nitride layer serves as a stop layer.
摘要:
A method for fabricating semiconductor device includes the steps of: forming a silicon layer on a substrate; forming a first metal silicon nitride layer on the silicon layer; performing an oxygen treatment process to form an oxide layer on the first metal silicon nitride layer; forming a second metal silicon nitride layer on the oxide layer; forming a conductive layer on the second metal silicon nitride layer; and patterning the conductive layer, the second metal silicon nitride layer, the oxide layer, the first metal silicon nitride layer, and the silicon layer to form a gate structure.
摘要:
The present invention provides a semiconductor structure, the semiconductor structure includes a substrate comprising a diffusion region, a transistor structure on the substrate, and a resistive random access memory (RRAM) on the substrate, wherein the resistive random access memory includes at least one metal silicide layer in direct contact with the diffusion region, and a lower electrode, a resistive switching layer and an upper electrode are sequentially disposed on the metal silicide layer.
摘要:
A resistive random access memory (RRAM) cell includes a substrate, a transistor having a gate on the substrate and a source/drain region in the substrate, a first inter-layer dielectric layer covering the transistor, a contact plug disposed in the first inter-layer dielectric layer and landing on the source/drain region, a resistive material layer conformally covering a protruding upper end portion of the contact plug, and a top electrode on the resistive material layer.
摘要:
A semiconductor device including a substrate, a spacer and a high-k dielectric layer having a U-shape profile is provided. The spacer located on the substrate surrounds and defines a trench. The high-k dielectric layer having a U-shape profile is located in the trench, and the high-k dielectric layer having a U-shape profile exposes an upper portion of the sidewalls of the trench.
摘要:
A semiconductor device includes a semiconductor substrate, at least a first fin structure, at least a second fin structure, a first gate, a second gate, a first source/drain region and a second source/drain region. The semiconductor substrate has at least a first active region to dispose the first fin structure and at least a second active region to dispose the second fin structure. The first/second fin structure partially overlapped by the first/second gate has a first/second stress, and the first stress and the second stress are different from each other. The first/second source/drain region is disposed in the first/second fin structure at two sides of the first/second gate.
摘要:
A method for fabricating semiconductor device with fin-shaped structure is disclosed. The method includes the steps of: forming a fin-shaped structure on a substrate; forming a first dielectric layer on the substrate and the fin-shaped structure; depositing a second dielectric layer on the first dielectric layer; etching back a portion of the second dielectric layer; removing part of the first dielectric layer to expose a top surface and part of the sidewall of the fin-shaped structure; forming an epitaxial layer to cover the exposed top surface and part of the sidewall of the fin-shaped structure; and removing a portion of the second dielectric layer.
摘要:
A method of fabrication a transistor device with a non-uniform stress layer including the following processes. First, a semiconductor substrate having a first transistor region is provided. A low temperature deposition process is carried out to form a first tensile stress layer on a transistor within the first transistor region, wherein a temperature of the low temperature deposition process is lower than 300 degree Celsius (° C.) . Then, a high temperature annealing process is performed, wherein a temperature of the high temperature annealing process is at least 150° C. higher than a temperature of the low temperature deposition process. Finally, a second tensile stress layer is formed on the first tensile stress layer, wherein the first tensile stress layer has a tensile stress lower than a tensile stress of the second tensile stress layer.
摘要:
A metal gate structure located on a substrate includes a gate dielectric layer, a metal layer and a titanium aluminum nitride metal layer. The gate dielectric layer is located on the substrate. The metal layer is located on the gate dielectric layer. The titanium aluminum nitride metal layer is located on the metal layer.
摘要:
A multigate field effect transistor includes two fin-shaped structures and a dielectric layer. The fin-shaped structures are located on a substrate. The dielectric layer covers the substrate and the fin-shaped structures. At least two voids are located in the dielectric layer between the two fin-shaped structures. Moreover, the present invention also provides a multigate field effect transistor process for forming said multigate field effect transistor including the following steps. Two fin-shaped structures are formed on a substrate. A dielectric layer covers the substrate and the two fin-shaped structures, wherein at least two voids are formed in the dielectric layer between the two fin-shaped structures.