Method and system for impedance-based quantification and microfluidic control

    公开(公告)号:US12031896B2

    公开(公告)日:2024-07-09

    申请号:US17425414

    申请日:2020-01-24

    Abstract: Disclosed herein are methods and systems that facilitate the integration of on-chip impedance sensors and measurement circuitries for quantifying the impedance/frequency response of microfluidic device under the same, or similar, conditions used for particle manipulation. The methods and systems can use a microfluidic chip comprising a microfluidic channel with one or more electric-field-generating structures located therein, including a first electric-field-generating structure, wherein the one or more electric-field-generating structures is configured to selectively polarize or manipulate biologic or particle components flowing within the microfluidic channel. The method and system can also employ a circuit configured for automated determination and quantification of parasitic voltage drops during AC electrokinetic particle manipulation, without the need to use valuable biological samples or model particles. The determined impedance response can be used to assess efficacy of the microfluidic device geometry as well as to provide control signals to inform downstream cell separation decisions.

    Methods for isolating pancreatic islets

    公开(公告)号:US11590501B2

    公开(公告)日:2023-02-28

    申请号:US17445972

    申请日:2021-08-26

    Abstract: A microfluidic device can include an upstream passage, a sample passage, a bifurcating passage, and a combining passage. The upstream passage can be configured to provide a focusing stream. The sample passage can be configured to provide a sample stream. The bifurcating passage can include a specified bifurcating flow resistance. The combining passage can be configured to create a combined stream from the focusing stream and the sample stream, where the focusing stream can direct the sample stream away from the upstream passage and toward the bifurcating passage. A first portion of the combined stream can be discharged through the bifurcating passage. The main discharge can be configured to discharge a second portion of the combined stream. The main discharge can include a main discharge resistance that is selectable to vary the main discharge resistance relative to the bifurcating flow resistance.

    DISTRIBUTION SYSTEM FOR FLOW CONTROL OF INFUSATE FROM BRANCH CATHETERS TO SELECTED SITE

    公开(公告)号:US20210093778A1

    公开(公告)日:2021-04-01

    申请号:US17050082

    申请日:2019-05-29

    Abstract: System and method to improve drug delivery to identified regions in the brain or elsewhere through direct infusion of a therapeutic agent or the like into that region. This direct infusion will allow for greater concentrations of the agent in the target region while reducing concentrations elsewhere in the body where these agents may be toxic. The system and method improves efficacy while reducing unwanted side effects. The system includes an array of multiple, independently targeted, microporous catheters for insertion into the target region and a distribution system that allows for individualized flow control to each catheter. The system may be connected to a reservoir that contains the therapeutic agent, and flow to the system is maintained through one or more pumps. This system will greatly improve on the current single catheter infusion design and shall provide therapy, delivered through multiple catheters, thus delivering the therapy evenly over a customizable volume.

Patent Agency Ranking