摘要:
Spectral information may be employed in process control and/or quality control of goods and articles. Spectral information may be employed in process control and/or quality control of media, for example financial instruments, identity documents, legal documents, medical documents, financial transaction cards, and/or other media, fluids for example lubricants, fuels, coolants, or other materials that flow, and in machinery, for example vehicles, motors, generators, compressors, presses, drills and/or supply systems. Spectral information may be employed in identifying biological tissue and/or facilitating diagnosis based on biological tissue.
摘要:
Systems for analyzing fluids (e.g., gases) include a chamber structure with a reflective inner surface, emitters, a primary detector positioned to principally detect electromagnetic energy reflected numerous times through the gas(es) and a calibration detector positioned to detect electromagnetic energy not reflected numerous times through the gas(es). Calibration may be automatically performed. The primary detector relies principally on Raleigh scattering. An optional primary detector may be positioned to principally detect Raman scattered electromagnetic energy.
摘要:
Sampling device geometry reduces specular reflectance, using lenses to focus electromagnetic energy to predominately return scattered rather than reflected electromagnetic energy to detector(s), reducing effect of non-matte surfaces and/or window. Sampling device includes inherent automatic optical calibration, and optionally thermal calibration. Calibration detectors are optically isolated with respective emitters.
摘要:
Spectral information may be employed in process control and/or quality control of goods and articles. Spectral information may be employed in process control and/or quality control of media, for example financial instruments, identity documents, legal documents, medical documents, financial transaction cards, and/or other media, fluids for example lubricants, fuels, coolants, or other materials that flow, and in machinery, for example vehicles, motors, generators, compressors, presses, drills and/or supply systems. Spectral information may be employed in identifying biological tissue and/or facilitating diagnosis based on biological tissue.
摘要:
A system employs combinations of marking media, each with respective distinguishing spectral characteristics to encode human comprehensible information in, and read human comprehensible information from, machine-readable indicia or symbols. Machine-readable indicia may be a single dot encoding information only in the combinations. Machine-readable symbols may be linear or two dimensional, spatially encoding information in the combinations, as well as spatially. A symbology may map at least the combinations to human-readable symbols or characters. A printer may form indicia or symbols with combinations of marking media. A reader may read indicia or symbols and decode information from at least the combinations of marking media. Different combinations may be visually homogenous, for example gray.
摘要:
A system employs combinations of marking media, each with respective distinguishing spectral characteristics to encode human comprehensible information in, and read human comprehensible information from, machine-readable indicia or symbols. Machine-readable indicia may be a single dot encoding information only in the combinations. Machine-readable symbols may be linear or two dimensional, spatially encoding information in the combinations, as well as spatially. A symbology may map at least the combinations to human-readable symbols or characters. A printer may form indicia or symbols with combinations of marking media. A reader may read indicia or symbols and decode information from at least the combinations of marking media. Different combinations may be visually homogenous, for example gray.
摘要:
A portable, tabletop fluid sampling device simplifies spectral analysis to produce an accurate but inexpensive chromatic fingerprint for fluid samples. In one embodiment, the sampling device uses an array of variable wavelength LED emitters and photodiode detectors to measure Rayleigh scattering of electromagnetic energy from the fluid sample contained in a cuvette. Either the fluid itself, or particles suspended in the fluid can then be identified by performing spectral pattern matching to compare results of a spectral scan against a library of known spectra. A wide range of applications include substance identification, security screening, authentication, quality control, and medical diagnostics.
摘要:
Sampling device geometry reduces specular reflectance, using lenses to focus electromagnetic energy to predominately return scattered rather than reflected electromagnetic energy to detector(s), reducing effect of non-matte surfaces and/or window. Sampling device includes inherent automatic optical calibration, and optionally thermal calibration. Calibration detectors are optically isolated with respective emitters.
摘要:
An apparatus employs a plurality of transducers distributed along a cable to sample a medium. Some of the transducers may be operated according to various sequences which specific wavelengths and/or magnitudes of emission of electromagnetic energy. Some of the transducers sample, detect or measure responses of the fluid medium to the emissions. Various other transducers may sample or measure temperature, depth or pressure, and flow characteristics of the fluid medium, and optionally flow characteristics above a surface or above a surface of the fluid medium. Such may allow identification and/or characterization of characteristics of the fluid medium and/or substances (e.g., contaminants for instance petroleum, phytoplankton, red tide microorganisms, nutrients, dissolved oxygen or other gasses). The apparatus may communicate with remote facilities, allowing monitoring, remote control, and/or analysis with or with information from other platforms.
摘要:
Systems for analyzing fluids (e.g., gases) include a chamber structure with a reflective inner surface, emitters, a primary detector positioned to principally detect electromagnetic energy reflected numerous times through the gas(es) and a calibration detector positioned to detect electromagnetic energy not reflected numerous times through the gas(es). Calibration may be automatically performed. The primary detector relies principally on Raleigh scattering. An optional primary detector may be positioned to principally detect Raman scattered electromagnetic energy.