Abstract:
A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
Abstract:
An arrangement of two shutters radially outward from an injector block and a susceptor onto which a wafer carrier is removably mounted are configured to provide a flowpath through a reactor chamber that does not exhibit a vortex, thereby reducing or eliminating buildup on the inside of the reactor chamber and facilitating large temperature gradient between the injector block and the wafer carrier. This can be accomplished by introduction of a purge gas flow at a radially inner wall of an upper shutter, and in some embodiments the purge gas can have a different chemical composition than the precursor gas used to grow desired epitaxial structures on the wafer carrier.
Abstract:
A wafer carrier assembly for use in a system for growing epitaxial layers on one or more wafers by chemical vapor deposition (CVD), the wafer carrier assembly includes a wafer carrier body formed symmetrically about a central axis, and including a generally planar top surface that is situated perpendicularly to the central axis and a planar bottom surface that is parallel to the top surface. At least one wafer retention pocket is recessed in the wafer carrier body from the top surface. Each of the at least one wafer retention pocket includes a floor surface and a peripheral wall surface that surrounds the floor surface and defines a periphery of that wafer retention pocket. At least one thermal control feature includes an interior cavity or void formed in the wafer carrier body and is defined by interior surfaces of the wafer carrier body.
Abstract:
In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
An injector block for supplying one or more reactant gases into a chemical vapor deposition reactor. The injector block including a plurality of first reactant gas distribution channels between one or more first reactant gas inlets and a plurality of first reactant gas distribution outlets to deliver a first reactant gas into the reactor, and a plurality of second reactant gas distribution channels between one or more second reactant gas inlets and a plurality of second reactant gas distribution outlets to deliver a second reactant gas into the reactor, the plurality of second reactant gas distribution outlets partitioned into at least a second reactant gas first zone and a second reactant gas second zone, the second reactant gas second zone at least partially surrounding the second reactant gas first zone.
Abstract:
In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
Methods are provided for treating wafers using a wafer carrier rotated about an axis. The wafer carrier is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
Abstract:
Apparatus for treating wafers using a wafer carrier rotated about an axis is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
Abstract:
A flow inlet element for a chemical vapor deposition reactor is formed from a plurality of elongated tubular elements extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane extending through the axis.