Abstract:
Devices, systems, and methods for controlling an intravascular imaging device are provided. For example, in one embodiment a method includes communicating a control signal to an actuator of the intravascular imaging device to cause oscillation of an imaging element of the intravascular imaging device, wherein the intravascular imaging device further includes an acoustic marker; receiving imaging data from the imaging element of the intravascular imaging device; identifying the acoustic marker in the imaging data by determining a correlation between the imaging data and a template representative of the acoustic marker; adjusting an aspect of the control signal based on identifying the acoustic marker; and communicating the adjusted control signal to the actuator of the intravascular imaging device.
Abstract:
Devices, systems, and methods for controlling an intravascular imaging device are provided. For example, in one embodiment a method includes communicating a control signal to an actuator of the intravascular imaging device to cause oscillation of an imaging element of the intravascular imaging device, wherein the intravascular imaging device further includes an acoustic marker; receiving imaging data from the imaging element of the intravascular imaging device; identifying the acoustic marker in the imaging data by determining a correlation between the imaging data and a template representative of the acoustic marker; adjusting an aspect of the control signal based on identifying the acoustic marker; and communicating the adjusted control signal to the actuator of the intravascular imaging device.
Abstract:
The invention provides methods and systems for correcting translational distortion in a medical image of a lumen of a biological structure. The method facilitates vessel visualization in intravascular images (e.g. IVUS, OCT) used to evaluate the cardiovascular health of a patient. Using the methods and systems described herein it is simpler for a provider to evaluate vascular imaging data, which is typically distorted due to cardiac vessel-catheter motion while the image was acquired.
Abstract:
Devices, systems, and methods for controlling the field of view in imaging systems are provided. For example, in one embodiment an imaging system includes a flexible elongate member sized and shaped for use within an internal structure of a patient, an imaging transducer positioned within the distal portion of the flexible elongate member, an imaging marker positioned to be detectable within a field of view of the imaging transducer, and a controller in communication with the flexible elongate member and configured to adjust a control signal of the flexible elongate member based on the detection of the imaging marker in data received from the flexible elongate member in order to achieve a desired field of view for the imaging transducer.
Abstract:
The disclosed automatic calibration systems and methods provide a repeatable way to detect internal catheter reflections and to shift the internal catheter reflections to calibrate an image.
Abstract:
This invention relates generally to the detection of objects, such as stents, within intraluminal images using principal component analysis and/or regional covariance descriptors. In certain aspects, a training set of pre-defined intraluminal images known to contain an object is generated. The principal components of the training set can be calculated in order to form an object space. An unknown input intraluminal image can be obtained and projected onto the object space. From the projection, the object can be detected within the input intraluminal image. In another embodiment, a covariance matrix is formed for each pre-defined intraluminal image known to contain an object. An unknown input intraluminal image is obtained and a covariance matrix is computed for the input intraluminal image. The covariances of the input image and each image of the training set are compared in order to detect the presence of the object within the input intraluminal image.
Abstract:
This invention relates generally to the detection of objects, such as stents, within intraluminal images using principal component analysis and/or regional covariance descriptors. In certain aspects, a training set of pre-defined intraluminal images known to contain an object is generated. The principal components of the training set can be calculated in order to form an object space. An unknown input intraluminal image can be obtained and projected onto the object space. From the projection, the object can be detected within the input intraluminal image. In another embodiment, a covariance matrix is formed for each pre-defined intraluminal image known to contain an object. An unknown input intraluminal image is obtained and a covariance matrix is computed for the input intraluminal image. The covariances of the input image and each image of the training set are compared in order to detect the presence of the object within the input intraluminal image.
Abstract:
The invention generally relates to medical imaging systems that instantly and/or automatically detect borders. Embodiments of the invention provide an imaging system that automatically detects a border at a location within a vessel in response only to navigational input moving the image to that location. In some embodiments, systems and methods of the invention operate such that when a doctor moves an imaging catheter to a new location with in tissue, the system essentially instantly finds, and optionally displays, the border(s), calculates an occlusion, or both.
Abstract:
Devices, systems, and methods for controlling the field of view in imaging systems are provided. For example, in one embodiment an imaging system includes a flexible elongate member sized and shaped for use within an internal structure of a patient, an imaging transducer positioned within the distal portion of the flexible elongate member, an imaging marker positioned to be detectable within a field of view of the imaging transducer, and a controller in communication with the flexible elongate member and configured to adjust a control signal of the flexible elongate member based on the detection of the imaging marker in data received from the flexible elongate member in order to achieve a desired field of view for the imaging transducer.
Abstract:
Systems and methods for aiding users in viewing, assessing and analyzing images, especially images of lumens and medical devices contained within the lumens. Systems and methods for interacting with images of lumens and medical devices, for example through a graphical user interface.