摘要:
A method of etching a dielectric layer formed on a substrate including a sequence of processing cycles, wherein each cycle comprises steps of depositing an inactive polymeric film, activating the film to etch the structure, and removing the film is disclosed. In one embodiment, the method uses a fluorocarbon gas to form the polymeric film and a substrate bias to activate such film.
摘要:
A processing method for depositing porous silica and doped silica films is provided. The method uses a cyclic scheme wherein each cycle comprises first codepositing silica with silicon, then selectively removing the silicon from the codeposit to form a porous structure. In a preferred embodiment, the codeposition is carried out by plasma enhanced chemical vapor deposition. After codeposition, the codeposit is exposed to a selective silicon removal reagent that can preferentially remove the silicon in the codeposit, leaving behind a porous structure. Repeated execution of the codeposition and the selective silicon removal steps build up thickness of the porous film. A porous film with highly uniform small pores and a desired porosity profile can be obtained with this method. This method is advantageous for forming a broad range of low-k dielectrics for semiconductor integrated circuit fabrication. The general method is also advantageous for forming other porous films for other applications.
摘要:
A processing method for depositing porous silica and doped silica films is provided. The method uses a cyclic scheme wherein each cycle comprises first codepositing silica with silicon, then selectively removing the silicon to form a porous structure. In a preferred embodiment, the codeposition is carried out by plasma enhanced chemical vapor deposition. The reagent feed stream comprises a mixture of codeposition reagents and a selective silicon removal reagent. RF power modulation is used to control the codeposition and the selective silicon removal steps with the later proceeds whenever the RF power is turned off or reduced to a low level. A porous film with highly uniform small pores and a desired porosity profile can be obtained with this method. This method is advantageous for forming a broad range of low-k dielectrics for semiconductor integrated circuit fabrication. The method is also advantageous for forming other porous films for other applications.
摘要:
Methods and systems are provided for processing a film over a substrate in a process chamber using plasma deposition. A plasma is formed in the process chamber and a process gas mixture suitable for processing the film is flowed into the process chamber under a set of process conditions. The process gas mixture may include a silicon-containing gas and an oxygen-containing gas to deposit a silicate glass, which may in some instances also be doped to obtain specifically desired optical properties. A parameter is monitored during processing of the film so that the process conditions may be changed in accordance with a correlation among a value of the parameter, an optical property of the film, and the process conditions.
摘要:
In one aspect, the invention provides methods and apparatus for forming optical devices on large area substrates. The large area substrates are preferably made of quartz, silica or fused silica. The large area substrates enable larger optical devices to be formed on a single die. In another aspect, the invention provides methods and apparatus for forming integrated optical devices on large area substrates, such as quartz, silica or fused silica substrates. In another aspect, the invention provides methods and apparatus for forming optical devices using damascene techniques on large area substrates or silicon substrates. In another aspect, methods for forming optical devices by bonding an upper cladding layer on a lower cladding and a core is provided.