摘要:
An interworking function (IWF) is coupled to a switch of a packet network and communicates with the network switch based on an Ethernet clock signal or some other type of clock signal. A primary reference clock (PRC) of the network generates a PRC signal, and a timing analyzer determines timing information indicative of timing relationships between the Ethernet clock signal and the PRC signal. The timing analyzer periodically transmits such timing information, and the IWF uses the timing information to generate a PRC signal that is traceable to the network PRC signal.
摘要:
The present disclosure generally pertains to systems and methods for passing timing information over packet networks. In one exemplary embodiment of the present disclosure, a transmitter inserts a timestamp into various packets being transmitted. A receiver determines the packet delay for each of these packets. The receiver monitors the packet delays of received packets over time to estimate a minimum packet delay for the network. Thereafter, the receiver uses the timestamps of received packets in order to update a local receiver clock signal so that the local receiver clock signal is synchronous to the clock signal used by the transmitter to generate the timestamps. However, the receiver filters the received timestamps such that the effects of packet delay variation to the synchronization of the local clock signals are reduced.
摘要:
A passive optical network (PON) has an optical line termination (OLT) that terminates an optical fiber servicing a plurality of optical network units (ONUs). Each ONU has one or more traffic containers (TCONTs) addressable by the OLT. The PON dynamic bandwidth allocation (DBA) implements a scheduling hierarchy, including several scheduling layers, such that disjoint sets of TCONTs can be grouped together, then disjoint sets of groups can be grouped, and so on. In such hierarchy, the residential traffic can be grouped separately from the business traffic. Further, within either the residential or business group, traffic may be grouped to define scheduling layers (“sub-groups”) within the residential or business group. Scheduling in one group or sub-group is performed independently of the scheduling in other groups or sub-groups, subject to the available bandwidth for each group. The scheduling may be controlled to allow the residential services to be oversubscribed while still ensuring compliance of service level performance metrics for the business services.
摘要:
A telecommunication system uses a dynamic bandwidth allocation (DBA) algorithm based on current load conditions for controlling transmissions to a plurality of access modules of an access node in order to achieve a fair allocation of network bandwidth at the access node. As an example, access modules at an access node communicate via a control channel with dynamic bandwidth allocation (DBA) logic that receives load information from each of the access modules. Using such load information, the DBA logic dynamically controls the upstream data rates so that a fair allocation of network bandwidth is achieved across all of the access modules. Specifically, the data rates are controlled such that packet flows for services of the same class achieve the same or similar performance (e.g., average data rate) regardless of which access module is receiving each respective packet flow.
摘要:
A controller at a distribution point (DP) of a communication system is coupled to a plurality of customer premises (CP) transceivers via drop connections in a point-to-multipoint architecture. Each drop connection is coupled to at least one switch that operates under the control of the controller for selectively isolating the drop connection from the controller, as well as the CP transceivers of other drop connections. In this regard, by controlling the states of the switches, the DP controller can control to which of the CP transceivers it is communicatively connected, and during operation the DP controller controls the switches such that it is communicatively connected only to the CP transceivers for which communication is desired or needed during a particular time interval.
摘要:
An exemplary communication system has logic and memory for storing data indicative of data rates for transceivers coupled to a bonding group. The transceivers are coupled to a plurality of queues, and the logic is configured to determine a plurality of values based on the data. Each of the values indicates a number of bits in a respective one of the queues and is based on the data rate indicated by the data for a respective one of the transceivers. The logic is configured to receive a data packet and to fragment the data packet into a plurality of fragments. The logic is further configured to allocate the fragments to communication connections of the bonding group based on the values and to transmit the fragments to the transceivers such that each of the fragments is transmitted across the respective communication connection to which the fragment is allocated.
摘要:
A communication system comprises a plurality of line cards having transceivers coupled to a plurality of subscriber lines. Each line card has at least one active transceiver within the same vectoring group, and each line card also has vector logic capable of cancelling crosstalk induced by an active transceiver that is a member of the vectoring group. In the event of a vectoring fault that prevents a line card from receiving vectoring information from at least on other line card, the vector logic is configured to disable vectoring for the interferers affected by the error in order to prevent vectoring operations based on obsolete vectoring coefficients from adversely affecting the quality of the communicated signals. The transceivers communicating signals affected by the suspended vectoring operations are also configured to adjust their constellation density profiles, thereby reducing their data rates, to accommodate the increased noise level resulting from the loss of vectoring. By handling the vectoring fault in such manner, communication can continue without requiring a retrain.
摘要:
An optical communication system comprises a network interface device (NID) having a media converter coupled to an optical fiber of a passive optical network (PON). The media converter converts optical signals from the PON into electrical signals for communication across at least one non-optical channel, such as a conductive or wireless connection, to customer premises equipment (CPE), such as a residential gateway or other customer premises (CP) device. Rather than implementing an optical media access control (optical MAC) layer in the NID, an optical MAC layer for handling PON protocols and management is implemented by the CPE, thereby effectively extending the customer end of the PON across at least one non-optical connection to the CPE. By implementing the optical MAC layer at the CPE, the complexity of the NID is reduced thereby lowering the cost of the NID. In one embodiment, in an effort to further reduce the complexity of the NID, the optical MAC layer is configured to control a laser-on state of an optical transmitter in the NID.
摘要:
A communication system comprises a plurality of line cards having transceivers coupled to a plurality of subscriber lines. Each line card has at least one active transceiver within the same vectoring group, and each line card also has vector logic capable of cancelling crosstalk induced by an active transceiver that is a member of the vectoring group. Further, the line cards are coupled to one another via a ring connection across which vectoring information is passed from one line card to the next. In the event of a failure of one of the line cards, the failed card is bypassed by the vectoring stream so that the operational line cards can continue crosstalk vectoring operations despite such failure.
摘要:
A communication system has a trunk extending from a network facility, such as a central office, with a plurality of distribution points positioned along the trunk. Each leg of the trunk defines a shared channel that permits peak data rates much greater than what would be achievable without channel sharing. As an example, the connections of each respective trunk leg may be bonded. Further, the same modulation format and crosstalk vectoring are used for each leg of the trunk. The crosstalk vectoring cancels both far-end crosstalk (FEXT) that couples between connections of a given trunk leg and crossover crosstalk that couples between one trunk leg and another. In addition, logic determines an amount of excess capacity available for each leg of the trunk and controls error correction based on the determined excess capacity.