摘要:
A wafer processing apparatus is fabricated by depositing a film electrode onto the surface of a base substrate, the structure is then overcoated with a protective coating film layer comprising at least one of a nitride, carbide, carbonitride or oxynitride of elements selected from a group consisting of B, Al, Si, Ga, refractory hard metals, transition metals, and combinations thereof. The film electrode has a coefficient of thermal expansion (CTE) that closely matches the CTE of the underlying base substrate layer as well as the CTE of the protective coating layer.
摘要:
A wafer processing apparatus is fabricated by depositing a film electrode onto the surface of a base substrate, the structure is then overcoated with a protective coating film layer comprising at least one of a nitride, carbide, carbonitride or oxynitride of elements selected from a group consisting of B, Al, Si, Ga, refractory hard metals, transition metals, and combinations thereof. The film electrode has a coefficient of thermal expansion (CTE) that closely matches the CTE of the underlying base substrate layer as well as the CTE of the protective coating layer.
摘要:
A wafer processing device or apparatus, i.e., a heater or an electrostatic chuck, comprises a planar support platen, a support shaft having centrally located bore, and a pair of electrical conductors located in the shaft. In one embodiment, the electrical conductors are concentrically located within the bore of the shaft, with the first electrical lead being in the form of a pyrolytic graphite rod and separated from the outer second graphite electrical lead by means of a pyrolytic boron nitride (pBN) coating. In a second embodiment, the support platen and the support shaft are formed from a single unitary body of graphite. In yet another embodiment of the device of the invention, the connection posts comprise a carbon fiber composite and the exposed ends of the electrical connectors are coated with a protective ceramic paste for extended life in operations.
摘要:
A composite coating for use on semi-conductor processing components, comprising a refractory metal carbide coating with its surface modified by at least one of: a) a carbon donor source for a stabilized stoichiometry, and b) a layer of nitride, carbonitride or oxynitride of elements selected from a group B, Al, Si, refractory metals, transition metals, rare earth metals which may or may not contain electrically conducting pattern, and wherein the metal carbide is selected from the group consisting of silicon carbide, tantalum carbide, titanium carbide, tungsten carbide, silicon oxycarbide, zirconium carbide, hafnium carbide, lanthanum carbide, vanadium carbide, niobium carbide, magnesium carbide, chromium carbide, molybdenum carbide, beryllium carbide and mixtures thereof. The composite coating is characterized as having an improved corrosion resistance property and little emissivity sensitivity to wavelengths used in optical pyrometry under the normal semi-conductor processing environments.
摘要:
A method of forming a pyrolytic boron nitride (PBN) article and an article having layers of PBN separated by layers of PBN having a dopant of sufficient concentration to induce peeling, the steps of introducing vapors of ammonia and a gaseous boron halide in a suitable ratio into a heated furnace reactor to cause boron nitride to be deposited in layers on a substrate, with at least one gaseous dopant injected into furnace at controlled periodic interval(s) such that at least two selected layers of boron nitride are doped with said gaseous dopant(s) at a minimum average concentration of 2 atomic wt % at a depth ranging from 1000 to 2000 angstroms in each selected layer, and with the selected layers spaced apart about 0.1 micron to 100 microns apart.
摘要:
Disclosed herein is a crack-free protective coating comprising at least one of aluminum nitride, aluminum oxide, aluminum oxynitride or combinations thereof. Disclosed herein too is a method for making an article comprising disposing a protective coating comprising at least one of aluminum nitride, aluminum oxide, aluminum oxynitride or combinations thereof upon a substrate comprising pyrolytic boron nitride, pyrolytic graphite and/or carbon doped boron nitride.
摘要:
A method of forming a pyrolytic boron nitride (PBN) article and an article having layers of PBN separated by layers of PBN having a dopant of sufficient concentration to induce peeling, the steps of introducing vapors of ammonia and a gaseous boron halide in a suitable ratio into a heated furnace reactor to cause boron nitride to be deposited in layers on a substrate, with at least one gaseous dopant injected into furnace at controlled periodic interval(s) such that at least two selected layers of boron nitride are doped with said gaseous dopant(s) at a minimum average concentration of 0.1 atomic wt % at a depth ranging from 1000 to 2000 angstroms in each selected layer, and with the selected layers spaced apart about 0.1 micron to 100 microns.