摘要:
Disclosed herein is a method for manufacturing an array substrate. The method includes forming a source electrode and a drain electrode on a substrate. A semiconductor layer, an organic insulating layer, and a gate electrode layer are sequentially formed to cover the substrate, the source electrode, and the drain electrode. A patterned photoresist layer is formed on the gate electrode layer. The exposed portion of the gate electrode layer, and a portion of the organic insulative layer and a portion of the semiconductor layer thereunder are removed to form a gate electrode. An organic passivation layer is formed on the gate electrode, the source electrode, and the drain electrode. The organic passivation layer has a contact window to expose a portion of the drain electrode. A pixel electrode is formed on the organic passivation layer and the exposed portion of the drain electrode.
摘要:
A light sensing device is disclosed. The light sensing device includes a first light sensor and a second light sensor. The first light sensor formed on a substrate includes a first metal oxide semiconductor layer for absorbing a first light having a first waveband. The second light sensor formed on the substrate includes a second metal oxide semiconductor layer and an organic light-sensitive layer on the second metal oxide semiconductor layer for absorbing a second light having a second waveband.
摘要:
Disclosed herein is a method for patterning a metal layer, which includes the following steps. A substrate having a metal layer thereon is provided. A patterned conductive polymeric layer is formed on the metal layer, wherein a portion of the metal layer is exposed by the patterned conductive polymeric layer. The substrate having the patterned conductive polymer layer is disposed in an electrolytic cell, so that the exposed portion of the metal layer is immersed in the electrolytic solution of the electrolytic cell. The anode of the electrolytic cell is electrically coupled to the patterned conductive polymeric layer, while the cathode of the electrolytic cell is immersed in the electrolytic solution. Sequentially, an electrical potential is applied across the anode and the cathode to perform an electrolysis reaction so that the exposed portion of the metal layer is dissolved in the electrolytic solution.
摘要:
The signal line structure is disposed between a gate driver and a display area of a display. The signal line structure includes a substrate, first metal layers, a first insulation layer, second metal layers, a second insulation layer and third metal layers. The first metal layers are arranged in parallel and toward a first direction in the substrate. The first insulation layer is disposed in the substrate and covers the first metal layers. The second metal layers are disposed on the positions of the first insulation layer corresponding to the first metal layers. The second insulation layer is disposed on the second metal layers and the first insulation layer. The third metal layers are disposed on the positions corresponding to the second metal layers in the second insulation layer. The distance between two adjacent second metal layers is less than that between two adjacent first metal layers.
摘要:
Disclosed herein is a thin film transistor. The thin film transistor is characterized in having a source interconnect layer and a drain interconnect layer. The source electrode and the drain electrode are respectively disposed above and in contact with the source interconnect layer and the drain interconnect layer. The semiconductor layer is in contact with both the source interconnect layer and the drain interconnect layer, but is not in contact with the source electrode and the drain electrode.
摘要:
A color electrophoretic display includes a substrate, a segment electrode circuit layer, a transparent electrode layer, an electrophoretic display medium layer, and a colored polymer film. The segment electrode circuit layer is disposed on the substrate and is configured to display a letter and/or a pattern. The transparent electrode layer is disposed opposing the segment electrode circuit layer, and the electrophoretic display medium layer is disposed between the segment electrode circuit layer and the transparent electrode layer. The electrophoretic display medium layer is controlled by an electric field that is produced and varied by the segment electrode circuit layer and the transparent electrode layer to change brightness. The color polymer film is disposed on the transparent electrode layer to produce color. The colored polymer film includes a polymer layer and pigment particles distributed in the polymer layer.
摘要:
A thin film transistor (TFT) array substrate includes a substrate, a gate electrode layer disposed on the substrate, an insulating layer, an oxide semiconductor layer disposed on the insulating layer, a source/drain electrode layer, an organic-acrylic photoresist layer, a passivation layer and an electrically conductive layer. The insulating layer is disposed on the gate electrode layer and the substrate. The source/drain electrode layer is disposed on the insulating layer and the oxide semiconductor layer, and a gap is formed through the source/drain electrode layer for exposing the oxide semiconductor layer therethrough. The organic-acrylic photoresist layer covers the source/drain electrode layer. The passivation layer is disposed on the substrate, the oxide semiconductor layer and the organic-acrylic photoresist layer. The electrically conductive layer is disposed on the passivation layer or the organic-acrylic photoresist layer and connected to the source/drain electrode layer or the gate electrode layer.
摘要:
A display device includes a substrate, a driving circuit, an E-paper display layer and a protective coating layer. The driving circuit is arranged on the substrate. The E-paper display layer is disposed on and driven by the driving circuit. The protective coating layer is coated on and in contact with the E-paper display layer. The protective coating layer can provide protection and better optical performance, and it is advantageous to the manufacturing method to overcome the problems such as bubbles and low light transmittance occurring in the conventional manufacturing method.
摘要:
A court border module using a display apparatus is disclosed, which uses piezoelectric elements to drive the display apparatus. When a ball hits a court border, which is defined by the display apparatus, a force is applied to the piezoelectric elements which then generate power to drive the corresponding part of the display apparatus. The color of the part of the display apparatus hit by the ball is switched. Therefore the change in the color of the court border can be observed by officials and others to instantly and objectively determine whether the ball has hit the court border.
摘要:
The present invention provides a display with touch control function. The display includes a touch panel module, a display module and a FPC board. The touch panel module includes a touch panel controller and a touch panel. The display module includes a display driver and a display panel. The touch panel is joined with the display panel. The FPC board couples with the display panel. The touch panel controller and the display driver are disposed on the FPC board.