摘要:
According to various embodiments, a variable resistance memory element and memory element array that uses variable resistance changes includes a select device, such as an ovonic threshold switch. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element.
摘要:
According to various embodiments, a variable resistance memory element and memory element array that uses variable resistance changes includes a select device, such as an ovonic threshold switch. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element.
摘要:
According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
摘要:
According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
摘要:
A nonvolatile memory device and methods of manufacturing the same has one electrode with a higher work function and a second electrode with a lower work function. The nonvolatile memory device further comprises one or more resistive random access memory (RRAM) cells. The RRAM cells comprise a semiconductor layer with a bandgap of at least four electron volts and a barrier layer between the semiconductor layer and one of the electrodes.
摘要:
This disclosure provides a nonvolatile memory device and related methods of manufacture and operation. The device may include one or more resistive random access memory (RRAM) that use techniques to provide a memory device with more predictable operation. In particular, forming voltage required by particular designs may be reduced through the use of a barrier layer, a reverse polarity forming voltage pulse, a forming voltage pulse where electrons are injected from a lower work function electrode, or through the use of an anneal in a reducing environment. One or more of these techniques may be applied, depending on desired application and results.
摘要:
A nonvolatile resistive memory element has a novel variable resistance layer comprising one or more rare-earth oxides. The rare-earth oxide has a high k value, a high bandgap energy, and the ability to maintain an amorphous structure after thermal anneal processes. Thus, the novel variable resistance layer facilitates improved switching performance and reliability of the resistive memory element.
摘要:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack having a metal oxide buffer layer disposed on or over a metal oxide bulk layer. The metal oxide bulk layer contains a metal-rich oxide material and the metal oxide buffer layer contains a metal-poor oxide material. The metal oxide bulk layer is less electrically resistive than the metal oxide buffer layer since the metal oxide bulk layer is less oxidized or more metallic than the metal oxide buffer layer. In one example, the metal oxide bulk layer contains a metal-rich hafnium oxide material and the metal oxide buffer layer contains a metal-poor zirconium oxide material.
摘要:
According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
摘要:
Provided are nonvolatile memory assemblies each including a resistive switching layer and current steering element. The steering element may be a transistor connected in series with the switching layer. Resistance control provided by the steering element allows using switching layers requiring low switching voltages and currents. Memory assemblies including such switching layers are easier to embed into integrated circuit chips having other low voltage components, such as logic and digital signal processing components, than, for example, flash memory requiring much higher switching voltages. In some embodiments, provided nonvolatile memory assemblies operate at switching voltages less than about 3.0V and corresponding currents less than 50 microamperes. A memory element may include a metal rich hafnium oxide disposed between a titanium nitride electrode and doped polysilicon electrode. One electrode may be connected to a drain or source of the transistor, while another electrode is connected to a signal line.