摘要:
The invention resides in a matrix, i.e. in a carrier material, with human or animal cells adherently bound thereto, the cells being infected with virus. It has shown that surface-dependent cells suitable for virus propagation remain adherently bound to a matrix even in the virus-infected state, continuously produce virus antigen over relatively long periods of time and deliver them into the culture medium. For producing TBE virus antigen by growing tick-borne encephalitis (TBE) virus in cell cultures, a surface-dependent permanent cell line, preferably the Vero cell line ATCC CCL 81, is inoculated with TBE virus, and the cells are kept bound to carriers in a non-lyric serum-free system while maintaining the cell growth, so as to maintain antigen formation, whereupon the antigen-containing medium is separated form the carrier-bound cells and, in a known manner, is processed to a galencially acceptable preparation by concentration, inactivation and purification.
摘要:
A method for depleting viral and molecular pathogens in a biological material containing one or several biological substances to be recovered is disclosed, wherein the biological material is admixed with an organic solvent, the solvent-admixed biological material is contacted with an ion exchanger, wherein the pathogens are adsorbed on the ion exchanger material, and at least one of the biological substances to be recovered does not interact or interacts only slightly with the ion exchanger, and the ion exchanger with the pathogens adsorbed thereon is sesparated from the biological material, a virus-depleted preparation of the biological substance being recovered.
摘要:
The invention relates to a pharmaceutical preparation comprising a plasma protein wherein said preparation is free of infectious agents as well as essentially free of denaturation products and is obtainable by a method that encompasses the following steps: a) addition of a polyether and a chaotropic agent to a solution comprising the plasma protein, optional lyophilization of the solution; b) inactivation of infectious agents in the presence of the polyether by a physio-chemical or chemical treatment, and c) removal of the polyether and the chaotropic agent.
摘要:
The invention relates to a method for the disintegration of any biologically active nucleic acid in a biological material, wherein a biologically active material is exposed or multiply exposed to laser beam to disintegrate essentially all biologically active nucleic acid in said biological material, while the biological integrity and activity of said biological material is maintained.
摘要:
This invention describes an influenza virus vaccine containing an influenza virus antigen obtained from a cell culture, with an influenza virus antigen content between 1 &mgr;g and 5 &mgr;g per dose and aluminum as an adjuvant as well as a method for its preparation.
摘要:
A method of producing an influenza virus and vaccines derived from the virus utilizes cultured vertebrate biomass aggregates comprising a plurality of cell types derived from a plurality of vertebrate tissues and is particularly suitable for use with chicken embryo cultures. The method both eliminates the necessity to use costly methods requiring whole chicken embryos and provides proteases suitable for the activation of a wide variety of viruses. After infecting the cells of the culture with an influenza virus, which is preferably modified to create a cleavage site in the hemagglutinin of the virus, a substance such as a protease is introduced that cleaves the hemagglutinin. The culture then is incubated under conditions that permit growth of the virus. The method provides also for the augmentation of virus activation in the culture by the continuous or batchwise removal of culture media, treatment of the media with substances such as proteases which increase cellular activation, attenuation of any undesired effects of the augmentation and return of the augmented media to the culture. The vaccines produced from the harvested virus therefore are free of egg proteins and are much more economical to produce. The methodology of the present invention allows the large scale continuous production of many viruses to a high titre.
摘要:
The present invention provides methods of large scale production of Hepatitis A Virus (HAV) on VERO cells bound to microcarrier. The invention also provides for methods of isolation of HAV from the cell culture supernatant of HAV infected VERO cells.
摘要:
A method for producing Influenza and other viruses and vaccines derived therefrom utilizes serum-free cultured vertebrate cells or vertebrate biomass aggregates to both eliminate the necessity to use costly methods requiring whole chicken embryos and, optionally, to provide proteases suitable for the activation of a wide variety of viruses. In one aspect, the method comprises the periodic or continuous removal of "treatment portions" of virus-containing culture medium into an "augmentation loop" for treatment with a broad range of substances, such as proteases that augment the activation of the virus. Use of the loop allows utilization of such substances at high concentrations while eliminating their cell toxic effects. Another aspect of the invention provides for the alteration of cleavage sites in virus proteins to thereby render them more susceptible to activation in culture. Thus, the method provides for the high yield production of many viruses that can be easily scaled up to continuous large scale production volumes and for resultant vaccines which are free of egg proteins and are much more economical to produce.
摘要:
The present invention provides methods of production of a purified enveloped virus antigen. In particular, it provides purified Ross River Virus (RRV) antigens, and vaccines comprising purified, inactivated Ross River Virus (RRV) antigen.
摘要:
A method for producing Influenza and other viruses and vaccines derived therefrom utilizes serum-free cultured vertebrate cells or vertebrate biomass aggregates to both eliminate the necessity to use costly methods requiring whole chicken embryos and, optionally, to provide proteases suitable for the activation of a wide variety of viruses. In one aspect, the method comprises the periodic or continuous removal of "treatment portions" of virus-containing culture medium into an "augmentation loop" for treatment with a broad range of substances, such as proteases that augment the activation of the virus. Use of the loop allows utilization of such substances at high concentrations while eliminating their cell toxic effects. Another aspect of the invention provides for the alteration of cleavage sites in virus proteins to thereby render them more susceptible to activation in culture. Thus, the method provides for the high yield production of many viruses that can be easily scaled up to continuous large scale production volumes and for resultant vaccines which are free of egg proteins and are much more economical to produce.