摘要:
A device for manufacturing a display device includes a deposition source; a deposition thickness calculator for calculating a deposition thickness of a deposition material deposited on a substrate; and a controller for controlling a power of a heater which heats the deposition source by comparing the deposition thickness calculated with a reference thickness. The controller controls the power of the heater either at least one time for each substrate on which the thin film is to be deposited or at regular intervals while the deposition material is deposited. Influence of measurement noise that is included in a quartz crystal sensor for measuring a deposition speed may be minimized, and distribution of deposition thickness of an organic light emitting material may be reduced, thereby increasing the yield of the deposition process and producing quality display devices.
摘要:
A device for manufacturing a display device includes a deposition source; a deposition thickness calculator for calculating a deposition thickness of a deposition material deposited on a substrate; and a controller for controlling a power of a heater which heats the deposition source by comparing the deposition thickness calculated with a reference thickness. The controller controls the power of the heater either at least one time for each substrate on which the thin film is to be deposited or at regular intervals while the deposition material is deposited. Influence of measurement noise that is included in a quartz crystal sensor for measuring a deposition speed may be minimized, and distribution of deposition thickness of an organic light emitting material may be reduced, thereby increasing the yield of the deposition process and producing quality display devices.
摘要:
A sputtering method includes receiving etch time information for a first substrate detected in a dry etching process, calculating a deposition time for a second substrate from the etch time information for the first substrate, and executing sputtering for the second substrate based the calculated deposition time. The thickness of the thin film deposited on the substrate in the sputter device may be uniformly maintained by using etch end point information detected in an end point detection (EPD) device. A sputtering system comprises a sputter device for executing a sputtering process for depositing a thin film on a substrate by a sputtering method, an EPD device for generating EPD information including etch time information for the substrate for a calculation of a deposition time during which the thin film is deposited, and a controller for calculating a deposition time by using the EPD information, and for controlling the sputter device based on the calculated deposition time.
摘要:
A sputtering method includes receiving etch time information for a first substrate detected in a dry etching process, calculating a deposition time for a second substrate from the etch time information for the first substrate, and executing sputtering for the second substrate based the calculated deposition time. The thickness of the thin film deposited on the substrate in the sputter device may be uniformly maintained by using etch end point information detected in an end point detection (EPD) device. A sputtering system comprises a sputter device for executing a sputtering process for depositing a thin film on a substrate by a sputtering method, an EPD device for generating EPD information including etch time information for the substrate for a calculation of a deposition time during which the thin film is deposited, and a controller for calculating a deposition time by using the EPD information, and for controlling the sputter device based on the calculated deposition time.
摘要:
A critical dimension controlling method in a semiconductor production process includes determining whether a model is to undergo a discontinuous production process when a run is inserted in a semiconductor manufacturing line, applying an offset for said model or a common offset for a model group including said model according to the determination, executing a production process in dependence upon a process variation along with the offset for the model or the common offset for the model group, and measuring an actual critical dimension in the production process. The offset for the model is calculated based on a previously measured actual critical dimension, and the calculated offset for the model is applied to the calculation of the common offset for the model group.
摘要:
A critical dimension controlling method in a semiconductor production process includes determining whether a model is to undergo a discontinuous production process when a run is inserted in a semiconductor manufacturing line, applying an offset for said model or a common offset for a model group including said model according to the determination, executing a production process in dependence upon a process variation along with the offset for the model or the common offset for the model group, and measuring an actual critical dimension in the production process. The offset for the model is calculated based on a previously measured actual critical dimension, and the calculated offset for the model is applied to the calculation of the common offset for the model group.
摘要:
A virtual measuring device and a method for measuring the deposition thickness of amorphous silicon being deposited on a substrate is disclosed, where the method of measuring the deposition thickness of amorphous silicon includes predicting and adapting operations. In the predicting operation, during a process of depositing the amorphous silicon to a substrate, the deposition thickness is predicted by multiplying a predicted deposition speed to a deposition time by using a prediction model expressing a relationship between a deposition speed and a plurality of process factors that are correlated with the deposition speed obtained from the deposition thickness and the deposition time, and the predicted deposition thickness is compared with the measured deposition thickness, so that the relationship between the plurality of process factors and the deposition speed in the prediction model is compensated according to the comparison difference.
摘要:
A membrane-electrode assembly for a mixed reactant fuel cell system is provided. The membrane-electrode assembly does not require a separator that physically separates the membrane-electrode assemblies from each other in a stack. The membrane-electrode assembly of the present invention instead includes an electrode substrate that is disposed on a surface of an anode or a cathode of the membrane-electrode assembly. The electrode substrate has a flow path, through which a fuel and an oxidant are supplied. The fuel and oxidant are absorbed into the electrode substrate and further into the anode and the cathode. The fuel and the oxidant are selectively oxidized and reduced in the anode and the cathode, respectively, to produce electricity.
摘要:
A membrane-electrode assembly for a mixed reactant fuel cell system is provided. The membrane-electrode assembly does not require a separator that physically separates the membrane-electrode assemblies from each other in a stack. The membrane-electrode assembly of the present invention instead includes an electrode substrate that is disposed on a surface of an anode or a cathode of the membrane-electrode assembly. The electrode substrate has a flow path, through which a fuel and an oxidant are supplied. The fuel and oxidant are absorbed into the electrode substrate and further into the anode and the cathode. The fuel and the oxidant are selectively oxidized and reduced in the anode and the cathode, respectively, to produce electricity.
摘要:
An evaporator for depositing material on a substrate includes a crucible configured to receive a deposition material, and a plurality of nozzles in fluid communication with the crucible and facing the substrate, the nozzles projecting away from the crucible and being arranged in a first direction along the crucible, at least two of the nozzles being inclined with respect to a normal to the substrate.