Abstract:
A conductive composition that comprises a branched metal carboxylate and one or more solvents. The solvents may be an aromatic hydrocarbon solvent. In embodiments, the branched metal carboxylate is a silver carboxylate. The conductive composition may be used in forming conductive features on a substrate, including by inkjet printing, screen printing or offset printing.
Abstract:
A transistor has a substrate, source and drain electrodes on the substrate, the source and drain electrodes formed of a conductor ink having silver nanoparticles with integrated dipolar surfactants, an organic semiconductor forming a channel between the source and drain electrodes, the organic semiconductor in contact with the source and drain electrodes, a gate dielectric layer having a first surface in contact with the organic semiconductor, and a gate electrode in contact with a second surface of the gate dielectric layer, the gate electrode formed of silver nanoparticles with integrated dipolar surfactants.
Abstract:
An ink composition suitable for ink jet printing, including printing on deformable substrates. In embodiments, the stretchable ink composition is based on an aqueous ink formulation that provides a more cost-efficient ink over formulations and provides robust images, even when printed on deformable substrates. These ink compositions can be used for ink jet printing.
Abstract:
An ink jet printing system comprises an ink reservoir, an ink passageway, an inkjet nozzle, and a plurality of magnetic elements that are located adjacent at least one of the ink reservoir and the ink passageway. The at least one of the ink reservoir and the ink passageway further includes having micro-magnetic particles located therein. The magnetic particles may have a particle size from about 500 nm to about 50 microns. The ink reservoir and ink passageway further contain ink composition comprising pigment colorant. The plurality of magnetic elements provide a magnetic field to be applied to the micro-magnetic particles which results in a chaotic motion of the magnetic particles in the ink mixture.
Abstract:
An ink composition suitable for ink jet printing, including printing on deformable substrates. In embodiments, the stretchable ink composition is based on a solventless monomer-based ink formulation comprising a mixture of acrylic ester oligomer and monomers of acrylic ester and aromatic acrylate.
Abstract:
A material for use in a 3D printer. The material may include a plurality of metallic particles and a stabilizing material. The metallic particles may have an average cross-sectional length that is less than or equal to about 100 nm. The stabilizing material may include an organoamine, carboxylic acid, thiol and derivatives thereof, xanthic acid, polyethylene glycols, polyvinylpyridine, polyninylpyrolidone, or a combination thereof.
Abstract:
An article of manufacture includes a substrate and a stretchable, conductive film. The stretchable, conductive film includes a plurality of annealed silver nanoparticles disposed on the substrate. The conductive film can be formed from a liquid composition comprising silver nanoparticles in a decalin solvent. The conductive film can further include a first conductivity associated with an as-annealed shape of the conductive film, and the film can include a second conductivity upon being stretched in at least one direction beyond the as-annealed shape.
Abstract:
A conductive composition that comprises a branched metal carboxylate and one or more solvents. The solvents may be an aromatic hydrocarbon solvent. In embodiments, the branched metal carboxylate is a silver carboxylate. The conductive composition may be used in forming conductive features on a substrate, including by inkjet printing, screen printing or offset printing.