摘要:
A component includes a micro-hologram layer, where the micro-hologram layer includes layers inert to light interleaved with layers of functional film. The functional film layers are made of a material that undergoes a change in its refractive index when illuminated by a light beam, yet undergoes no change in its refractive index when illuminated by a different light beam. The components may further include interleaved spacer films with multiple micro-hologram layers and other elements (e.g., servo layer, coatings, and the like) so as to comprise a data storage device. Methods of manufacturing the component and device are also disclosed.
摘要:
A component includes a micro-hologram layer, where the micro-hologram layer includes layers inert to light interleaved with layers of functional film. The functional film layers are made of a material that undergoes a change in its refractive index when illuminated by a light beam, yet undergoes no change in its refractive index when illuminated by a different light beam. The components may further include interleaved spacer films with multiple micro-hologram layers and other elements (e.g., servo layer, coatings, and the like) so as to comprise a data storage device. Methods of manufacturing the component and device are also disclosed.
摘要:
A data storage device includes a substrate layer, made of a moldable non-photopolymer plastic substrate and having a servo layer, adjoined to a stacked film structure that is constructed of multiple functional films, having data layers, with spacer film(s) disposed between each of the functional films. Methods of manufacturing the data storage device include using a roll-to-roll system to adhere thin spacer film extrusions between the multiple functional film extrusions so as to construct the stacked film structure. An additional method uses an application of functional film coating to thin spacer films and a roll-to-roll system.
摘要:
An inspection system is provided to examine internal structures of a target material. This inspection system includes a generation laser, an ultrasonic detection system, a thermal imaging system, and a processor/control module. The generation laser produces a pulsed laser beam that is operable to induce ultrasonic displacements and thermal transients at the target material. The ultrasonic detection system detects ultrasonic surface displacements at the target material. The thermal imaging system detects thermal transients at the target material. The processor analyzes both detected ultrasonic displacements and thermal imagery of the target material to yield information about the target material's internal structure.
摘要:
An invention to measure of objects of non-homogeneous ultrasonic impedance in the testing path is provided to detect the present of flaws in any part of the object. The invention utilized a reference signal to compare against the actual signal derived from ultrasonic testing of the object. Reference signals are determined based upon the known or calculated properties of the object's layers or previously obtained signals measured from the object.
摘要:
The present invention discloses a method and system for laser ultrasonic imaging an object. In the present invention, a synthetic aperture focusing technique (SAFT) is used to generate a high resolution subsurface images of the object. In addition, the present invention filters low frequency components from detected laser ultrasound waveform data to further enhance resolution, SNR, and contrast. Geometric knowledge permits the present invention to generate images of objects having a complex and arbitrary-shape.
摘要:
The present invention discloses an acoustic composite material for an ultrasonic phased array and a method for making. The acoustic composite material is formed from a microcapillary array having a plurality of holes of a constant cross-section and volume fraction. In each of the plurality of holes of the microcapillary array, a polymer fill is deposited therein. The polymer filled microcapillary array is cut at an axis perpendicular to the microcapillary array into a plurality of sections. Each of the plurality of sections are then ground into a predetermined thickness and bonded to a phased array of piezoelectric elements and backfill material.
摘要:
The present invention discloses a high density integrated ultrasonic phased array transducer and method for making. The high density integrated ultrasonic phased array includes a backfill material having an array of holes formed therein. Each of the holes are separated a predetermined distance apart from each other and have a predetermined hole depth. Each of the holes contain a conducting material deposited therein forming a high density interconnect with uniaxial conductivity. A piezoelectric ceramic material is bonded to the backfill material at a surface opposite the array of conducting holes. Matching layers are bonded to the piezoelectric ceramic material. The surface opposite the array of conducting holes is cut through a portion of the matching layers, the piezoelectric ceramic material, and the backfill material, forming an array of isolated individual elements each having multiple electrical connections therein.
摘要:
A screening module configured to screen at least a portion of a biological sample disposed on an analysis surface is provided. The screening module comprises a laser source a scanning unit comprising one or more scanning devices, wherein the scanning devices are configured to rotate in an oscillatory scanning motion about an axis of rotation to scan the analysis surface in at least one direction, wherein the scanning unit is physically coupled to the laser source, and a detection unit comprising one or more detection devices.
摘要:
Disclosed herein is a method for imaging anisotropic media comprising selecting multiple points within the anisotropic media, which is to be imaged; determining an acoustic path between each selected point in the anisotropic media and a receiver position on the surface of the anisotropic media; calculating an acoustic wave velocity at all necessary points; determining an acoustic path length based on each selected point in the anisotropic media and the receiver position; determining a time delay for each acoustic wave between each image point and the receiver position on the surface of the anisotropic media; calculating a sum for each point selected based on the appropriate acoustic wave velocities and the acoustic path lengths; and generating an image of the anisotropic media using the coherent sums generated for each said image point selected.