Abstract:
The present invention discloses a semiconductor device, comprising: a substrate, a gate stack structure on the substrate, source and drain regions in the substrate on both sides of the gate stack structure, and a channel region between the source and drain regions in the substrate, characterized in that at least one of the source and drain regions comprises a GeSn alloy. In accordance with the semiconductor device and method for manufacturing the same of the present invention, GeSn stressed source and drain regions with high concentration of Sn is formed by implanting precursors and performing a laser rapid annealing, thus the device carrier mobility of the channel region is effectively enhanced and the device drive capability is further improved.
Abstract:
The present invention discloses a semiconductor device, which comprises a substrate, a buffer layer on the substrate, an inversely doped isolation layer on the buffer layer, a barrier layer on the inversely doped isolation layer, a channel layer on the barrier layer, a gate stack structure on the channel layer, and source and drain regions at both sides of the gate stack structure, characterized in that the buffer layer and/or the barrier layer and/or the inversely doped isolation layer are formed of SiGe alloys or SiGeSn alloys, and the channel layer is formed of a GeSn alloy. The semiconductor device according to the present invention uses a quantum well structure of SiGe/GeSn/SiGe to restrict transportation of carriers, and it introduces a stress through lattice mis-match to greatly increase the carrier mobility, thus improving the device driving capability so as to be adapted to high-speed and high-frequency application.
Abstract:
The present invention provides to a liquid crystal panel, which comprises: a first substrate, a second substrate, a coplanar transparent electrode layer and a liquid crystal layer. The first and second substrates have a first and second alignment films, respectively. The coplanar transparent electrode layer is disposed onto the second alignment film. The liquid crystal layer is disposed in a space between the first alignment film of the first substrate and the coplanar transparent electrode layer of the second substrate. The liquid crystal film comprises positive liquid crystal molecules and reactive mesogens (RMs). The liquid crystal panel of the present invention can overcome the problems of pollution and static electricity generated from the rubbing alignment in the IPS mode. In comparison with the PSVA mode, the present invention can simplify the manufacturing process and provide the advantages of high contrast, high response speed and wide viewing angle.
Abstract:
The present invention provides a method of liquid crystal (LC) alignment and LC panel, which includes: providing first substrate, forming first alignment film on surface of first substrate; providing second substrate, disposed oppositely to first substrate, and forming common electrodes, pixel electrodes disposed with separating space, and second alignment film covering common electrodes and pixel electrodes on surface of second substrate; filling LC composite between first alignment film and second alignment film, LC composite comprising reactive monomers and LC molecules; applying high frequency alternating electric field to common electrodes and pixel electrodes so that reactive monomers and LC molecules arranged perpendicular to high frequency alternating electric field with pretilt angle; continuing applying high frequency alternating electric field and using UV radiation to fix pretilt angle to perform alignment. The present invention does not use rubbing to perform alignment, and avoids pollution to LC panel.
Abstract:
A diffusion barrier layer, a metal interconnect arrangement and a method of manufacturing the same are disclosed. In one embodiment, the metal interconnect arrangement may comprise a conductive plug/interconnect wire for electrical connection, and a diffusion barrier layer provided on at least a portion of a surface of the conductive plug/interconnect wire. The diffusion barrier layer may comprise insulating amorphous carbon.
Abstract:
The present invention discloses a semiconductor device, which comprises a substrate, a gate stack structure on the substrate, a channel region in the substrate under the gate stack structure, and source and drain regions at both sides of the channel region, wherein there is a stressed layer under and at both sides of the channel region, in which the source and drain regions are formed. According to the semiconductor device and the method for manufacturing the same of the present invention, a stressed layer is formed at both sides of and under the channel region made of a silicon-based material so as to act on the channel region, thereby effectively increasing the carrier mobility of the channel region and improving the device performance.
Abstract:
A liquid crystal medium composition of liquid crystal display includes: a negative liquid crystal material, reactive monomer, an initiator, and a stabilizer. The initiator functions to induce photo polymerization of the reactive monomer. The initiator has a molecular structure comprising aromatic rings, carbonyl groups connected to the aromatic rings, and substituted moieties connected to the aromatic rings. The initiator lowers the activation energy of chain initiation reaction of the polymerization of reactive monomer to allow the photo polymerization of the reactive monomer to take place in a wider wavelength range of 200-450 nm, so as to reduce the required intensity and luminance of ultraviolet light and to speed up the reaction of the reactive monomers and also to provide a uniform result of reaction, to reduce the destruction that the ultraviolet light causes on the material of alignment layer and the liquid crystal material, and to improve stability of the panel.
Abstract:
The present invention discloses a semiconductor device, which comprises a substrate, a buffer layer on the substrate, an inversely doped isolation layer on the buffer layer, a barrier layer on the inversely doped isolation layer, a channel layer on the barrier layer, a gate stack structure on the channel layer, and source and drain regions at both sides of the gate stack structure, characterized in that the buffer layer and/or the barrier layer and/or the inversely doped isolation layer are formed of SiGe alloys or SiGeSn alloys, and the channel layer is formed of a GeSn alloy. The semiconductor device according to the present invention uses a quantum well structure of SiGe/GeSn/SiGe to restrict transportation of carriers, and it introduces a stress through lattice mis-match to greatly increase the carrier mobility, thus improving the device driving capability so as to be adapted to high-speed and high-frequency application.
Abstract:
The present invention provides to an in-plane-switching (IPS) mode liquid crystal panel, which comprises: a first substrate, a second substrate, a coplanar transparent electrode layer and a liquid crystal layer. The first and second substrates have a first alignment film and a second alignment film, respectively. The coplanar transparent electrode layer is disposed onto the second alignment film. The liquid crystal layer is disposed in a space between the first alignment film of the first substrate and the coplanar transparent electrode layer of the second substrate. The liquid crystal layer comprises dual-frequency liquid crystal molecules and dual-frequency reactive mesogens/monomers. The liquid crystal panel of the present invention can overcome the problems of pollution and static electricity generated from the rubbing alignment in the in-plane-switching (IPS) mode, so as to simplify the manufacturing process and provide the advantages of high contrast, high response speed and wide viewing angle.
Abstract:
The present invention discloses a manufacturing method of an Optically Compensated Bend (OCB) liquid crystal panel, which comprises: an arranging step S1 for alternately arranging a plurality of thin-film transistor (TFT) substrates and a plurality of color filter (CF) substrates, the TFT substrates and the CF substrates are coated with optical alignment material; a light irradiating step S2 for using an ultraviolet (UV) light source to irradiate the TFT substrates and the CF substrates so that alignment films of predetermined alignment directions are formed by the optical alignment material on the TFT substrates and the CF substrates; and an attaching step S3 for attaching each of the TFT substrates and an adjacent one of the CF substrates in such a way that an alignment direction of the TFT substrate is the same as that of the corresponding CF substrate and filling an OCB liquid crystal layer therebetween to form a plurality of OCB liquid crystal panels. For the OCB liquid crystal panel of the present invention, the TFT substrates and the CF substrates are optically aligned in a contactless way, the efficiency of each irradiation is high, which is favorable for mass production.