Abstract:
In the connector, a plurality of parallel flanges and groove pins between every two of the parallel flanges are additionally provided to the middle of the connector plug. A plurality of parallel grooves and flange pins between every two of the parallel grooves are additionally provided to the middle of the connector socket. The plurality of flanges of the connector plug are inserted into the plurality of grooves of the connector socket. The mating face of the connector plug is in contact with the mating face of the connector socket.
Abstract:
A method, device and medium for fingerprint identification are provided. The method for fingerprint identification includes that: it is detected whether the number of damaged pixel units in a fingerprint identification sensor reaches a preset threshold value, and the damaged pixel units are physically damaged pixel units in the fingerprint identification sensor; and if the number of the damaged pixel units reaches the preset threshold value, identifying a fingerprint image acquired by the fingerprint identification sensor is stopped.
Abstract:
A display apparatus and an electronic device are provided, which belong to the field of display technology. The display apparatus comprises a light-converging layer configured to refract the light in a first designated direction, wherein the first designated direction is a direction whose angle with a straight ahead direction of the display apparatus is less than a designated angle, and the straight ahead direction is a direction perpendicular to a plane where the light-converging layer is located; and a light-emitting layer positioned below the light-converging layer and configured to emit light.
Abstract:
Examples herein provide multi-turn coil multiplex circuits. The multi-turn coil multiplex circuits include a multi-turn coil, a switch, a near field communication (NFC) matching circuit, and a camera circuit. The switch includes a common port, a first port, and a second port. The multi-turn coil is connected to the common port. The NFC matching circuit is connected to the first port. The camera circuit is connected to the second port. Where a camera control signal is present, the connection with the second port is activated and the multi-turn coil can be used as a camera focusing coil associated with the camera circuit. Where no camera control signal is present, the connection with the first port is activated and the multi-turn coil can be used as an NFC antenna associated with the NFC matching circuit.
Abstract:
The present disclosure relates to an earphone socket, an earphone plug, an earphone and an electronic device. For example, the earphone socket may include a socket body in which an earphone jack is formed. The earphone socket may include multiple ground terminals, which may be arranged in the earphone jack. The ground terminals may contact a ground section disposed on an earphone plug when the earphone plug is inserted into the earphone jack. The technical solutions of the present disclosure reduce earphone crosstalk and improve tone quality.
Abstract:
A charging method is provided. The method includes: receiving a direction setting signal, and determining a charging direction according to the direction setting signal; determining a charging operation as charging a slave device with a master device when the charging direction is a first charging direction; determining the charging operation as charging the master device with the slave device when the charging direction is a second charging direction opposite to the first charging direction; and sending to a power management module of the master device and to a power management module of the slave device a charging instruction according to the charging operation determined. Accordingly, two smart devices connected through a connecting line may be charged by each other according to a user-defined charging direction.
Abstract:
A method, a device, and a terminal are provided for controlling a flash light. In the method, the device obtains position data of an object to be photographed. The device determines a parameter of the flash light with respect to the object to be photographed based on the position data. Depending on different positions of the object to be photographed, different parameters of flash light are provided to the flash light to obtain a clear image.
Abstract:
A resonant rectifying device includes a transformer having a primary winding and a secondary winding, a primary-side circuit coupled to the primary winding of the transformer, and a secondary-side circuit coupled to the secondary winding of the transformer. The primary-side circuit includes a first field effect transistor (FET) and a second FET coupled in series between a voltage source and a ground, a capacitor, and an inductor. A first side of the capacitor is coupled to a point between the first and the second FETs. A second side of the capacitor is coupled to a first end of the inductor and one end of the primary winding. A second end of the inductor is coupled to the ground. The secondary-side circuit includes a third FET and a fourth FET coupled to a first end and a second end of the secondary winding, respectively.
Abstract:
A method of switching an apparatus state of a first apparatus having a first universal serial bus (USB) interface connected via a connecting wire with a second USB interface of a second apparatus is provided. The method may include receiving a state switching instruction, setting a level of a configuration channel (CC) in a USB interface circuit corresponding to the first USB interface from a first high level to a first low level via a logic controller of the first apparatus when the state switching instruction instructs the first apparatus to perform a master-to-slave switch, and setting the level of the CC in the USB interface circuit corresponding to the first USB interface from the first low level to the first high level via the logic controller of the first apparatus when the state switching instruction instructs the first apparatus to perform a slave-to-master switch.
Abstract:
A charger for charging a terminal, includes: a power supply device configured to output a direct current (DC) charging current, the power supply device including a voltage output port and a feedback receiving port; a charging port configured to connect to the terminal, and to output the DC charging current from the power supply device to the terminal, the charging port including a power supply port and a data signal port, the power supply port being connected to the voltage output port and configured to output the DC charging current to the terminal; a charging control device; and a switch device provided between the feedback receiving port and the charging port, and configured to connect the feedback receiving port to the power supply port or the data signal port according to control of the charging control device.