摘要:
A method of fabricating a magnetic device is described. A mask removing layer is formed on a layered sensing stack and a hard mask layer is formed on the mask removing layer. A first reactive ion etch is performed with a non-oxygen-based chemistry to define the hard mask layer using an imaged layer formed on the hard mask layer as a mask. A second reactive ion etch is performed with an oxygen-based chemistry to define the mask removing stop layer using the defined hard mask layer as a mask. A third reactive ion etch is performed to define the layered sensing stack using the hard mask layer as a mask. The third reactive ion etch includes an etching chemistry that performs at a lower etching rate on the hard mask layer than on the layered sensing stack.
摘要:
A method of fabricating a magnetic device is described. A mask removing layer is formed on a layered sensing stack and a hard mask layer is formed on the mask removing layer. A first reactive ion etch is performed with a non-oxygen-based chemistry to define the hard mask layer using an imaged layer formed on the hard mask layer as a mask. A second reactive ion etch is performed with an oxygen-based chemistry to define the mask removing stop layer using the defined hard mask layer as a mask. A third reactive ion etch is performed to define the layered sensing stack using the hard mask layer as a mask. The third reactive ion etch includes an etching chemistry that performs at a lower etching rate on the hard mask layer than on the layered sensing stack.
摘要:
In some examples, a system comprising a data storage member including a magnetic storage medium, the magnetic storage medium having a plurality of magnetic bit domains aligned on at least one data track, where a transition boundary between respective magnetic bit domains defines a transition curvature. The system may further comprise a magnetic read head including a first shield layer, a second shield layer, and a read sensor stack provided proximate to the first and second shield layers, where the magnetic read head senses a magnetic field of each of the plurality of magnetic bit domains according to a read playback sensitivity function. In some examples, the shield layers and read sensor stack may be configured to provide a reader playback sensitivity function that substantially corresponds to the shape of the respective magnetic bit domains.
摘要:
In some examples, a system comprising a data storage member including a magnetic storage medium, the magnetic storage medium having a plurality of magnetic bit domains aligned on at least one data track, where a transition boundary between respective magnetic bit domains defines a transition curvature. The system may further comprise a magnetic read head including a first shield layer, a second shield layer, and a read sensor stack provided proximate to the first and second shield layers, where the magnetic read head senses a magnetic field of each of the plurality of magnetic bit domains according to a read playback sensitivity function. In some examples, the shield layers and read sensor stack may be configured to provide a reader playback sensitivity function that substantially corresponds to the shape of the respective magnetic bit domains.
摘要:
Aspects include methods to produce pattern media templates and the templates. A pattern of resist structures is formed on a first material layer. A conformal layer of a second material is deposited on the resist pattern, covering tops and side walls of the resist structures. The first material is more resistant to ion milling than the second material, and less resistant to plasma etching than the second material. The first material can be amorphous carbon and the second material can be aluminum oxide. The second material is removed on the tops, and preserved on the side walls. The resist structures and portions of the first layer not supporting second layer material are removed by plasma. The remaining structure is 2× denser than the resist pattern. Conformal deposition of second material and ion milling can be repeated. CMP removes the second material down to a portion of remaining first material, and remaining first material is removed by plasma, leaving a 4× denser pitch pattern structure formed from the second material.
摘要:
A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
摘要:
A magnetic reader comprises first and second shields oriented transversely to a media-facing surface, a magnetoresistive stack located between the first and second shields, and a flux guide. The magnetoresistive stack extends from a proximal end oriented toward the media-facing surface to a distal end oriented away from the media-facing surface. The flux guide extends from the first shield toward the second shield, and is spaced from the magnetoresistive stack at the distal end. The flux guide magnetically couples the distal end of the magnetoresistive stack to the first shield.
摘要:
A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
摘要:
A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
摘要:
A method including forming a multilayer structure. The multilayer structure includes a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The multilayer structure also includes an intermediate layer comprising the first component and a second component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The second component is different than the first component. The multilayer structure further includes a cap layer comprising the first component. The method further includes heating the multilayer structure to an annealing temperature to cause a phase transformation of the intermediate layer. Also a hard magnet including a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The hard magnet also includes a cap layer comprising the first component. The hard magnet further includes an intermediate layer between the seed layer and the cap layer. The intermediate layer includes the first component and a second component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The first component is different than the second component. Additionally, a read/write head including the hard magnet.