摘要:
By providing a normally deposited layer as a buffer layer between a substrate and an obliquely deposited layer, it is possible to prevent contaminants on the substrate from diffusing into the obliquely deposited layer. Also, by providing a normally deposited layer as a passivation layer on the uppermost obliquely deposited layer, absorption of water vapor in the air by the obliquely deposited layer is prevented. Further, by forming a laminated object comprising obliquely deposited layers and dense normally deposited layers, strength of each obliquely deposited layer itself is increased and relaxation of its columnar structure can be suppressed with certainty because both the diffusion of contaminants from the substrate and the absorption of water in the air is prevented. Thus, by removing factors to accelerate the relaxation of columnar structure in the obliquely deposited layer, clouding of the obliquely deposited film layer can be prevented.
摘要:
An anisotropic nanophase composite material and a method of producing same. The composite material comprises a nanophase composite structure containing a multiplicity of particulates of at least one material. The particulates of one material are spaced from each other three-dimensionally and anisotropically oriented in a given direction. The particulates have an average thickness of 1 to 10 nanometers and an average length of not less than 10 nanometers, the length being larger than the thickness. Since the particulates of dimensions on the order of nanometers are oriented only in a given direction, the composite material produces an intensified nonlinear optical effect and is excellent in polarizing characteristics, birefringent characteristics, or photovoltaic characteristics.
摘要:
An anisotropic nanophase composite material and a method of producing same. The composite material comprises a nanophase composite structure containing a multiplicity of particulates of at least one material. The particulates of one material are spaced from each other three-dimensionally and anisotropically oriented in a given direction. The particulates have an average thickness of 1 to 10 nanometers and an average length of not less than 10 nanometers, the length being larger than the thickness. Since the particulates of dimensions on the order of nanometers are oriented only in a given direction, the composite material produces an intensified nonlinear optical effect and is excellent in polarizing characteristics, birefringent characteristics, or photovoltaic characteristics.
摘要:
A recording medium includes a first substance and a second substance at least in which the first and second substances undergo an oxidation-reduction reaction when an external energy is applied, thereby recording information by varying the optical characteristics. In the recording medium, the reaction of the first and second substances is suppressed, reaction which degrades the recording characteristics other than the case where the recording medium is subjected to recording. In an optical disk 100 (i.e., the recording medium), a WO3 film 2 (i.e., a second substance), a C film 3 (i.e., a third substance) and an Sn-10 atomic % Sr film 4 (i.e., a first substance) are formed successively on a substrate 1. When the recording medium is irradiated with a recording laser beam as an external energy, the WO3 forming the film 2 is reduced to WO2.83, and the Sn-10 atomic % Sr forming the film 4 is oxidized to SrO and/or SnO mainly with the WO3 and the Sn-10 atomic % Sr passing through the C film 3 and/or destroying the C film 3. When the recording medium is not irradiated with the recording laser beam, the presence of the C film 3 suppresses the reaction between the WO3 film 2 and the Sn-10 atomic % Sr film 4.
摘要:
In an optical disk which includes a recording film having a laminated construction, and which records information by changing optical characteristics of the recording film by applying a laser beam, there are laminatedly formed a WO3 film 2 as a second layer, the WO3 requiring energy by about 470 kJ when it dissociates 1 mol of oxygen molecules, an Sn—43 atomic % Bi film 3 which includes Sn as a first layer, the Sn generating energy by about 610 kJ when it bonds with 1 mol of oxygen molecules and having a melting point of about 139° C., and a resin film 4 in this order on a guide groove 1c forming surface 1b of a substrate 1. When a recording laser beam is applied, a part of Sn—43 atomic % Bi film 3 is turned into a liquid phase, both of the films 2 and 3 react, and the optical characteristics of the recording film 10 vary so that information is recorded. As a result, the retention characteristic of the recorded data is secured, and the reactivity of the recording film is enhanced.
摘要:
A recording medium which includes a first substance and a second substance, wherein an external energy is applied to at least one of the first and second substances to react them in order to change the optical characteristics of the substances for recording information, the recording medium including: a first layer composed of a first substance including at least one of S and Se, a second layer composed of a second substance including a metal, and a barrier layer being disposed between the first and second layers, which allows the reaction between the first and second layers when laser beam for recording is irradiated as an external energy, and suppresses the reaction between the first and second layers when laser beam for recording is not irradiated. Alternatively, the recording medium can be free from the barrier layer, and the second substance can be arranged to have two or more compositionally different portions or two or more phases with a different crystalline state. Thus, when the external energy is not applied, the reaction between the first substance and the second substance is suppressed. Hence, the recording characteristics of the recording medium is inhibited from degrading.
摘要:
The present invention is a method of manufacturing a quantum dot array having a plurality of columnar parts including a quantum dot on a substrate, the method comprising the steps of obliquely vapor-depositing a material constituting a first barrier layer to become an energy barrier against the quantum dot onto a surface of the substrate, so as to form a plurality of first barrier layers; obliquely vapor-depositing a material constituting the quantum dot with respect to the surface of the substrate, so as to form the quantum dots on the first barrier layers; and obliquely vapor-depositing a material constituting a second barrier layer to become an energy barrier against the quantum dot with respect to the surface of the substrate, so as to form the second barrier layers on the quantum dots.
摘要:
A recording medium is for recording information by varying optical characteristic thereof by application of an external energy thereto, and includes a first substance and a second substance. When the external energy is applied to the recording medium, the first and second substances react with each other to form a third substance having a tungsten-bronze crystalline structure, thereby varying the optical characteristic. The third substance absorbs the external energy and varies the reflectivity of the external energy. Thus, the recording medium records information thereon. The recording medium is good in environmental resistance and information retention, because the third substance is stable energetically.
摘要:
A method of fabricating a hot carrier energy conversion structure, and a hot carrier energy conversion structure. The method comprises forming an energy selective contact ESC comprising a tunnelling layer; forming a carrier generation layer on the ESC; and forming a semiconductor contact without a tunnelling layer on the carrier generation layer.
摘要:
The present invention provides a hot carrier type photovoltaic device capable of effectively improving conversion efficiency even when the residence time of carriers in a light absorbing layer is short. The photovoltaic device includes: a light absorbing layer that absorbs light and generates electrons and holes; an electron moving layer that is provided adjacent to one surface of the light absorbing layer; a hole moving layer that is provided adjacent to the other surface of the light absorbing layer; a negative electrode that is provided on the electron moving layer; and a positive electrode that is provided on the hole moving layer. The electron moving layer has a conduction band that has an energy gap narrower than that of a conduction band of the light absorbing layer and selectively transmits the electrons with a predetermined energy level. The hole moving layer has a valence band that has an energy gap narrower than that of a valence band of the light absorbing layer and selectively transmits the holes with a predetermined energy level. The light absorbing layer includes p-type impurities or n-type impurities.