摘要:
A 2-dimensional beam scan unit (2) reflects emission beams from a red laser light source (1a), a green laser light source (1b) and a blue laser light source (1c) and scans in a 2-dimensional direction. Diffusion plates (3a, 3b, 3c) diffuse the respective light beams scanned in the 2-dimensional direction to introduce them to corresponding spatial light modulation elements (5a, 5b, 5c). The respective spatial light modulation elements (5a, 5b, 5c) modulate the respective lights in accordance with video signals of the respective colors. A dichroic prism (6) multiplexes the lights of the three colors after the modulation and introduces the multiplexed lights to a projection lens (7) so that a color image is displayed on a screen (8). Since the 2-dimensional light emitted from the beam scan unit is diffused to illuminate the spatial light modulation element, it is possible to change the optical axis of the beam emerging from the light diffusion member for irradiating the spatial light modulation element moment by moment, thereby effectively suppressing speckle noise.
摘要:
A 2-dimensional beam scan unit reflects emission beams from a red laser light source, a green laser light source and a blue laser light source and scans in a 2-dimensional direction. Diffusion plates diffuse the respective light beams scanned in the 2-dimensional direction to introduce them to corresponding spatial light modulation elements. The respective spatial light modulation elements modulate the respective lights in accordance with video signals of the respective colors. A dichroic prism multiplexes the lights of the three colors after the modulation and introduces the multiplexed lights to a projection lens so that a color image is displayed on a screen. Since the 2-dimensional light emitted from the beam scan unit is diffused to illuminate the spatial light modulation element, it is possible to change the optical axis of the beam emerging from the light diffusion member for irradiating the spatial light modulation element moment by moment, thereby effectively suppressing speckle noise.
摘要:
An optical waveguide device comprises a substrate having first and second surfaces, and an optical waveguide provided on the first surface of the substrate, having a light-incoming facet and a facet inclined with respect to the optical waveguide. Guided light incident to the optical waveguide through the light-incoming facet is totally reflected off the inclined facet, and the guided light is transmitted through the first or second surface of the substrate.
摘要:
A 2-dimensional beam scan unit reflects emission beams from a red laser light source, a green laser light source and a blue laser light source and scans in a 2-dimensional direction. Diffusion plates diffuse the respective light beams scanned in the 2-dimensional direction to introduce them to corresponding spatial light modulation elements. The respective spatial light modulation elements modulate the respective lights in accordance with video signals of the respective colors. A dichroic prism multiplexes the lights of the three colors after the modulation and introduces the multiplexed lights to a projection lens so that a color image is displayed on a screen. Since the 2-dimensional light emitted from the beam scan unit is diffused to illuminate the spatial light modulation element, it is possible to change the optical axis of the beam emerging from the light diffusion member for irradiating the spatial light modulation element moment by moment, thereby effectively suppressing speckle noise.
摘要:
A 2-dimensional beam scan unit reflects emission beams from a red laser light source, a green laser light source and a blue laser light source and scans in a 2-dimensional direction. Diffusion plates diffuse the respective light beams scanned in the 2-dimensional direction to introduce them to corresponding spatial light modulation elements. The respective spatial light modulation elements modulate the respective lights in accordance with video signals of the respective colors. A dichroic prism multiplexes the lights of the three colors after the modulation and introduces the multiplexed lights to a projection lens so that a color image is displayed on a screen. Since the 2-dimensional light emitted from the beam scan unit is diffused to illuminate the spatial light modulation element, it is possible to change the optical axis of the beam emerging from the light diffusion member for irradiating the spatial light modulation element moment by moment, thereby effectively suppressing speckle noise.
摘要:
After forming domain inverted layers 3 in an LiTaO3 substrate 1, an optical waveguide is formed. By performing low-temperature annealing for the optical wavelength conversion element thus formed, a stable proton exchange layer 8 is formed, where an increase in refractive index generated during high-temperature annealing is lowered, thereby providing a stable optical wavelength conversion element. Thus, the phase-matched wavelength becomes constant, and variation in harmonic wave output is eliminated. Consequently, with respect to an optical wavelength conversion element utilizing a nonlinear optical effect, a highly reliable element is provided.
摘要:
An optical pickup and an optical information recording/reproducing device are provided, each of which is capable of forming a super-resolution spot to conduct micro-mark recording, and does not undergo signal degradation due to an increased sidelobe in a reproducing operation. A variable phase filter having three regions to produce a phase difference in a radial direction is used, to provide a phase difference of π between the center region and the side regions in a recording operation, so that a super-resolution spot is formed on a recording layer of the optical disk. In a reproducing operation, a phase difference is nullified between the regions of the variable phase filter, so that a normal light spot at a diffraction limit having a smaller sidelobe is formed. The variable phase filter can be formed with a homogeneous-alignment liquid crystal element.
摘要:
An optical waveguide device is provided that can reduce external interference noise. The optical waveguide device includes a substrate, an optical waveguide formed on the substrate, a periodic polarization inversion region formed on the optical waveguide, and an optical thin film formed in a portion of the optical waveguide. The optical waveguide (refractive index: N2) and the optical thin film (refractive index: N1) differ in refractive index dispersion, and the magnitude relationship between the refractive indexes is reversed depending on wavelength. The relationship N1>N2 is established for light having a shorter wavelength, while the relationship N2>N1 is established for light having a longer wavelength.
摘要:
The present invention aims to simplify a mass production process of an optical waveguide device and to reduce cost as well as noise. The optical waveguide device includes an optical waveguide whose entrance end face and exit end face are substantially parallel to each other. A SHG device is mass-produced by optically polishing an optical material substrate with a large area and then cutting the substrate. This method can mass-produce the optical waveguide devices having a uniform device length. The angle between the exit end face of the optical waveguide and the direction of an optical axis of the optical waveguide at the exit end face is not 90°, thereby reducing return light from the exit end face.
摘要:
A laser beam as fundamental waves which is emitted from a distribution Bragg reflection (DBR) semiconductor laser is incident on an optical waveguide of a light wavelength conversion device in which domain-inverted regions and the optical waveguide are formed in an LiTaO.sub.3 substrate. The wavelength of the incident laser beam is then converted so as to obtain higher harmonic waves such as blue light. In the conversion, a drive current to be applied to a DBR portion of the DBR semiconductor laser is changed so as to change an oscillating wavelength of the DBR semiconductor laser, thereby matching the oscillating wavelength with a phase-matched wavelength of the light wavelength conversion device. Thus, the generation of the harmonic waves to be output is stably controlled.