摘要:
An iron-based heat-generating material excellent in oxidation resistance at an elevated temperature which comprises an iron-based alloy capable of generating heat by passing electricity therethrough and a coating of aluminum and oxygen formed on the surface of the alloy, the amount of the oxygen in the coating is less than the stoichiometric amount of oxygen in Al.sub.2 O.sub.3. The material can be prepared by vacuum evaporation of Al onto the surface of the iron-based alloy wherein an oxygen partial pressure in a vacuum gaseous atmosphere for the vacuum evaporation is adjusted so that there is formed on the surface of the alloy a coating consisting of aluminum and oxygen, the amount of the oxygen in the coating being less than the stoichiometric amount of oxygen in Al.sub.2 O.sub.3. When the material is heated in ambient or oxidizing atmosphere, an outermost layer of the coating is rapidly converted to Al.sub.2 O.sub.3.
摘要:
An iron-based heat-generating material excellent in oxidation resistance at an elevated temperature which comprises an iron-based alloy capable of generating heat by passing electricity therethrough and a coating of aluminum and oxygen formed on the surface of the alloy, the amount of the oxygen in the coating is less than the stoichiometric amount of oxygen in Al.sub.2 O.sub.3. The material can be prepared by vacuum evaporation of Al onto the surface of the iron-based alloy wherein an oxygen partial pressure in a vacuum gaseous atmosphere for the vacuum evaporation is adjusted so that there is formed on the surface of the alloy a coating consisting of aluminum and oxygen, the amount of the oxygen in the coating being less than the stoichiometric amount of oxygen in Al.sub.2 O.sub.3. When the material is heated in ambient or oxidizing atmosphere, an outermost layer of the coating is rapidly converted to Al.sub.2 O.sub.3.
摘要:
The surface of a steel material is irradiated with ion beams, held at a temperature of 100.degree.-400.degree. C. and then subjected to vapor deposition plating in vacuo. The vapor deposition plating may be performed by successively or simultaneously depositing different plating metals. The temperature control may use the sensible heat of the steel material, wherein the vapor deposition plating is applied to the surface of the steel material, which is in the temperature range of 100.degree.-400.degree. C. during cooling after ion beam irradiation, in a vacuum atmosphere. Since the surface of the steel material is held at a temperature of 100.degree.-400.degree.C., a lot of active spots remain on the surface. The active spots serve as starting points for the vapor deposition of the plating metals. The obtained plating layer is excellent in adhesiveness, workability, corrosion resistance and conformability to paint.
摘要:
A Zn-Mg binary coating layer formed on a steel sheet has the tri-layered structure that the first sublayer composed of a Zn-Mg alloy having Mg concentration of 0.5 wt. % or less, the second sublayer composed of a Zn-Mg alloy having Mg concentration of 7 wt. % or more and the third sublayer composed of a Zn-Mg alloy having Mg concentration of 0.5 wt. % or less are successively laminated. The coating layer may have the penta-layered structure wherein sublayers composed of a Zn-Mg alloy having Mg concentration of 2-7 wt. % are additionally interposed between the high-Mg and low-Mg sublayers. A Zn-Fe or Zn-Fe-Mg alloy layer may be formed at the boundary between the substrate steel and the coating layer. The adhesion ratio of the first sublayer to the top sublayer is preferably 1.2 or more, while the high-Mg sublayer is preferably conditioned to the mixed structure of a Zn.sub.2 Mg phase with a Mg-dissolved Zn phase. Due to the specified lamellar structure, the intrinsic properties of the high-Mg sublayer is sufficiently exhibited, and the secondary paint adhesiveness of the coating layer is excellent. Consequently, the coated steel sheet is useful as structural members or parts exposed to a severe corrosive atmosphere in various industrial fields.
摘要:
A separator for a low-temperature fuel cell comprises a stainless steel substrate S having a surface to which carbonaceous particles such as graphite particles GP or carbon black aggregates CA adhere with dotted distribution. The carbonaceous particles are preferably bonded through a diffusion layer DL to the surface of the substrate S. The carbonaceous particle-dispersed layer may be a plating layer in which graphite particles GP or carbon black aggregates CA are dispersed or formed by thermal decomposition of organic components in a carbonaceous particle-dispersed paint applied to the surface of the substrate S. Since carbonaceous particles free from oxide films adhere to the surface of the acid-resistant stainless steel substrate S, contact resistance of the separator is sufficiently low. Consequently, a power generator having a plurality of fuel cells laminated together exhibits high power-generating efficiency with less heat loss caused by a Joule heat.
摘要:
A Zn--Mg binary coating layer formed on a steel sheet has the tri-layered structure that the first sublayer composed of a Zn--Mg alloy having Mg concentration of 0.5 wt. % or less, the second sublayer composed of a Zn--Mg alloy having Mg concentration of 7 wt. % or more and the third sublayer composed of a Zn--Mg alloy having Mg concentration of 0.5 wt. % or less are successively laminated. The coating layer may have the penta-layered structure wherein sublayers composed of a Zn--Mg alloy having Mg concentration of 2-7 wt. % are additionally interposed between the high-Mg and low-Mg sublayers. A Zn--Fe or Zn--Fe--Mg alloy layer may be formed at the boundary between the substrate steel and the coating layer. The adhesion ratio of the first sublayer to the top sublayer is preferably 1.2 or more, while the high-Mg sublayer is preferably conditioned to the mixed structure of a Zn.sub.2 Mg phase with a Mg-dissolved Zn phase. Due to the specified lamellar structure, the intrinsic properties of the high-Mg sublayer is sufficiently exhibited, and the secondary paint adhesiveness of the coating layer is excellent. Consequently, the coated steel sheet is useful as structural members or parts exposed to a severe corrosive atmosphere in various industrial fields.
摘要:
A Mg source 3 is received in a vessel 1 having an opening 8, and the vessel 1 is heated at 670.degree. C. or higher to effuse Mg vapor through the opening 8. Since the vessel 1 is filled with Mg vapor, Mg is evaporated from molten state under stable condition without fluctuations in evaporation speed. The Mg vapor is effectively consumed for vapor deposition. A reflector plate may be provided at the outlet of the opening 8, or a duct for introducing Mg vapor from the vessel to the surface of a substrate sheet may be provided. In order to evaporate Mg from stabilized molten state, operational conditions are preferably determined so as to satisfy the relationships of W.sub.1 /W.sub.2
摘要:
A metal vapor 12 passing through a guide duct 13 from a vapor source 10 to a steel strip 1 is sampled through a takeoff pipe 14 to a measuring chamber 15. The metal vapor is irradiated with a measuring beam 20 in the chamber 15, to detect the absorbance of luminous energy in the metal vapor. The detected value of absorbance is used for the quantitative calculation of the metal vapor 12 passing through the guide duct 13, and the opening ratio of a shutter 17 provided in the guide duct 13 is adjusted on the basis of the calculation result so as to control the flow amount of the metal vapor 12 passing through the guide duct 13. In the case where a large amount of the metal vapor 12 passes through the guide duct 13, the amount of the metal vapor 12 reaching the measuring beam 20 is reduced by partially discharging the metal vapor 12 from the measuring chamber 15. Since the deposition amount of a plating metal is directly controlled in response to the amount of the metal vapor 2 passing through the guide duct 13, the amount of a deposited plating layer is controlled with high accuracy and with a quick response time in a continuous vapor deposition coating line.
摘要:
A substation instrument control system is disclosed. The substation instrument control system includes a plurality of transformers that generate a plurality of waveform signals representing electric properties of a substation instrument main body. A merging unit is communicatively coupled to the plurality of transformers and includes a signal processing unit and a control unit. The signal processing unit receives the plurality of waveform signals from the plurality of transformers and converts the plurality of waveform signals to a digital signal. The control unit controls operation of the signal processing unit using a setting data. An intelligent electronic device is communicatively coupled to the merging unit and receives the digital signal from the merging unit.
摘要:
According to the present invention, there is provided an optical fiber, an optical fiber ribbon and an optical fiber cable that reduce both the increase in transmission loss and the decrease in strength. According to an embodiment of the present invention, there is provided an optical fiber in which an outer circumferential surface of an optical fiber is coated with a primary coating layer. In the optical fiber, the primary coating layer includes a ultraviolet curable resin, and the ultraviolet curable resin contains 0.05 or more and 0.75 or less parts by weight of a reactive silane coupling agent and 0.05 or more and 0.75 or less parts by weight of an unreactive silane coupling agent.