摘要:
A catadioptric system is provided comprising a correcting plate and an optical system. The correcting plate is configured to condition electromagnetic radiation to correct at least one aberration. The optical system is configured to reflect a first portion of the conditioned electromagnetic radiation, to refract a second portion of the conditioned electromagnetic radiation, and to focus the reflected first portion of the conditioned electromagnetic radiation onto a target portion of a substrate. The first portion of the electromagnetic radiation is not refracted by an optical element, allowing the catadioptric optical system to operate in a broad spectral range.
摘要:
A catadioptric optical system having a high numerical aperture operates in a wide spectral range. The catadioptric optical system includes a correcting plate, a first reflective surface and a second reflective surface. The correcting plate conditions electromagnetic radiation to correct at least one aberration. The first reflective surface is positioned to reflect the electromagnetic radiation conditioned by the correcting plate. The second reflective surface is positioned to focus the electromagnetic radiation reflected by the first reflective surface onto a target portion of a substrate. The electromagnetic radiation reflected by the first reflective surface and focused by the second reflective surface is not refracted by a refractive element, thereby enabling the catadioptric optical system to operate in a broad spectral range.
摘要:
A catadioptric optical system having a high numerical aperture operates in a wide spectral range. The catadioptric optical system includes a correcting plate, a first reflective surface and a second reflective surface. The correcting plate conditions electromagnetic radiation to correct at least one aberration. The first reflective surface is positioned to reflect the electromagnetic radiation conditioned by the correcting plate. The second reflective surface is positioned to focus the electromagnetic radiation reflected by the first reflective surface onto a target portion of a substrate. The electromagnetic radiation reflected by the first reflective surface and focused by the second reflective surface is not refracted by a refractive element, thereby enabling the catadioptric optical system to operate in a broad spectral range.
摘要:
An inspection apparatus includes an illumination system that receives a first beam and produces second and third beams from the first beam and a catadioptric objective that directs the second beam to reflect from a wafer. A first sensor detects a first image created by the reflected second beam. A refractive objective directs the third beam to reflect from the wafer, and a second sensor detects a second image created by the reflected third beam. The first and second images can be used for CD measurements. The second beam can have a spectral range from about 200 nm to about 425 nm, and the third beam can have a spectral range from about 425 nm to about 850 nm. A third sensor may be provide that detects a third image created by the third beam reflected from the wafer. The third image can be used for OV measurements.
摘要:
An inspection apparatus includes an illumination system that receives a first beam and produces second and third beams from the first beam and a catadioptric objective that directs the second beam to reflect from a wafer. A first sensor detects a first image created by the reflected second beam. A refractive objective directs the third beam to reflect from the wafer, and a second sensor detects a second image created by the reflected third beam. The first and second images can be used for CD measurements. The second beam can have a spectral range from about 200 nm to about 425 nm, and the third beam can have a spectral range from about 425 nm to about 850 nm. A third sensor may be provide that detects a third image created by the third beam reflected from the wafer. The third image can be used for OV measurements.
摘要:
A catadioptric optical system operates in a wide spectral range. In an embodiment, the catadioptric optical system includes a first reflective surface positioned and configured to reflect radiation; a second reflective surface positioned and configured to reflect radiation reflected from the first reflective surface as a collimated beam, the second reflective surface having an aperture to allow transmission of radiation through the second reflective surface; and a channel structure extending from the aperture toward the first reflective surface and having an outlet, between the first reflective surface and the second reflective surface, to supply radiation to the first reflective surface.
摘要:
Disclosed are systems and methods for time differential reticle inspection. Contamination is detected by, for example, determining a difference between a first signature of at least a portion of a reticle and a second signature, produced subsequent to the first signature, of the portion of the reticle.
摘要:
A coherence remover is provided. In an embodiment the coherence remover includes a first mirror and a second mirror coupled to the first mirror. The coherence remover is configured to receive an input beam. Each of the first and second mirrors is configured to reflect a respective portion of the input beam to produce respective one or more intermediate beams. The intermediate beams collectively form an output beam that has a reduced coherence compared to the input beam.
摘要:
Disclosed are apparatuses, methods, and lithographic systems for holographic mask inspection. A holographic mask inspection system (300, 600, 700) includes an illumination source (330), a spatial filter (350), and an image sensor (380). The illumination source being configured to illuminate a radiation beam (331) onto a target portion of a mask (310). The spatial filter (350) being arranged in a Fourier transform pupil plane of an optical system (390, 610, 710), where the spatial filter receives at least a portion of a reflected radiation beam (311) from the target portion of the mask. The optical system being arranged to combine (360, 660, 740) the portion of the reflected radiation beam (311) with a reference radiation beam (361, 331) to generate a combined radiation beam. Further, the image sensor (380) being configured to capture holographic image of the combined radiation beam. The image may contain one or more mask defects.
摘要:
An optical integrator having a first surface and a second surface that is used in a lithographic apparatus to modify light. The first surface is reflective, defines a volume, and is configured to be disposed in an optical illumination system along an optical axis, to surround the optical axis, and to reflect a light along a path incident upon the first surface. The second surface is disposed in the volume and has a first section of the second surface that is semi-reflective and is configured to reflect a first portion of a light along a path incident upon the first section of the second surface and to transmit a second portion of the light along the path incident upon the first section of the second surface. The second surface increases the number of reflections of the light to increase the uniformity of the intensity distribution of the light.