摘要:
A coherence remover is provided. In an embodiment the coherence remover includes a first mirror and a second mirror coupled to the first mirror. The coherence remover is configured to receive an input beam. Each of the first and second mirrors is configured to reflect a respective portion of the input beam to produce respective one or more intermediate beams. The intermediate beams collectively form an output beam that has a reduced coherence compared to the input beam.
摘要:
An inspection apparatus includes an illumination system that receives a first beam and produces second and third beams from the first beam and a catadioptric objective that directs the second beam to reflect from a wafer. A first sensor detects a first image created by the reflected second beam. A refractive objective directs the third beam to reflect from the wafer, and a second sensor detects a second image created by the reflected third beam. The first and second images can be used for CD measurements. The second beam can have a spectral range from about 200 nm to about 425 nm, and the third beam can have a spectral range from about 425 nm to about 850 nm. A third sensor may be provide that detects a third image created by the third beam reflected from the wafer. The third image can be used for OV measurements.
摘要:
An inspection apparatus includes an illumination system that receives a first beam and produces second and third beams from the first beam and a catadioptric objective that directs the second beam to reflect from a wafer. A first sensor detects a first image created by the reflected second beam. A refractive objective directs the third beam to reflect from the wafer, and a second sensor detects a second image created by the reflected third beam. The first and second images can be used for CD measurements. The second beam can have a spectral range from about 200 nm to about 425 nm, and the third beam can have a spectral range from about 425 nm to about 850 nm. A third sensor may be provide that detects a third image created by the third beam reflected from the wafer. The third image can be used for OV measurements.
摘要:
An optical integrator having a first surface and a second surface that is used in a lithographic apparatus to modify light. The first surface is reflective, defines a volume, and is configured to be disposed in an optical illumination system along an optical axis, to surround the optical axis, and to reflect a light along a path incident upon the first surface. The second surface is disposed in the volume and has a first section of the second surface that is semi-reflective and is configured to reflect a first portion of a light along a path incident upon the first section of the second surface and to transmit a second portion of the light along the path incident upon the first section of the second surface. The second surface increases the number of reflections of the light to increase the uniformity of the intensity distribution of the light.
摘要:
Disclosed are apparatuses, methods, and lithographic systems for EUV mask inspection. An EUV mask inspection system can include an EUV illumination source, an optical system, and an image sensor. The EUV illumination source can be a standalone illumination system or integrated into the lithographic system, where the EUV illumination source can be configured to illuminate an EUV radiation beam onto a target portion of a mask. The optical system can be configured to receive at least a portion of a reflected EUV radiation beam from the target portion of the mask. Further, the image sensor can be configured to detect an aerial image corresponding to the portion of the reflected EUV radiation beam. The EUV mask inspection system can also include a data analysis device configured to analyze the aerial image for mask defects.
摘要:
Disclosed are apparatuses, methods, and lithographic systems for EUV mask inspection. An EUV mask inspection system can include an EUV illumination source, an optical system, and an image sensor. The EUV illumination source can be a standalone illumination system or integrated into the lithographic system, where the EUV illumination source can be configured to illuminate an EUV radiation beam onto a target portion of a mask. The optical system can be configured to receive at least a portion of a reflected EUV radiation beam from the target portion of the mask. Further, the image sensor can be configured to detect an aerial image corresponding to the portion of the reflected EUV radiation beam. The EUV mask inspection system can also include a data analysis device configured to analyze the aerial image for mask defects.
摘要:
An optical integrator having a first surface and a second surface that is used in a lithographic apparatus to modify light. The first surface is reflective, defines a volume, and is configured to be disposed in an optical illumination system along an optical axis, to surround the optical axis, and to reflect a light along a path incident upon the first surface. The second surface is disposed in the volume and has a first section of the second surface that is semi-reflective and is configured to reflect a first portion of a light along a path incident upon the first section of the second surface and to transmit a second portion of the light along the path incident upon the first section of the second surface. The second surface increases the number of reflections of the light to increase the uniformity of the intensity distribution of the light.
摘要:
Disclosed are systems and methods for time differential reticle inspection. Contamination is detected by, for example, determining a difference between a first signature of at least a portion of a reticle and a second signature, produced subsequent to the first signature, of the portion of the reticle.
摘要:
A catadioptric system is provided comprising a correcting plate and an optical system. The correcting plate is configured to condition electromagnetic radiation to correct at least one aberration. The optical system is configured to reflect a first portion of the conditioned electromagnetic radiation, to refract a second portion of the conditioned electromagnetic radiation, and to focus the reflected first portion of the conditioned electromagnetic radiation onto a target portion of a substrate. The first portion of the electromagnetic radiation is not refracted by an optical element, allowing the catadioptric optical system to operate in a broad spectral range.