摘要:
The present invention discloses a method of forming a crown capacitor for a DRAM cell. An etching method having different selectivity between the BPSG and silicon oxynitride layer is applied to form a sacrificial structure with a concanovenex sidewall. Using the sacrificial structure as a mold, a high capacitance crown capacitor is obtained.
摘要:
A method for fabricating a DRAM capacitor is described. First, a semiconductor substrate having a capacitor contact is provided. Next, a first polysilicon layer is formed. Then, an oxide layer and a silicon oxy-nitride layer are sequentially formed over the first polysilicon layer. Next, the silicon oxy-nitride layer, the oxide layer, and the first polysilicon layer are selectively etched to leave a rectangular stack layer. Afterwards, the oxide layer and the first polysilicon layer of the rectangular stack layer are etched from the sidewall direction to leave a double T-shaped stack layer. Then, second polysilicon layer is formed on the upper surface and the sidewall of the double T-shaped stack layer. Next, the second polysilicon layer is selectively removed. The remaining second and first polysilicon layer are used as the bottom electrode. Afterwards, a dielectric layer and an upper electrode are formed on the bottom electrode.
摘要:
A method of fabricating trench isolation for trench-capacitor DRAM devices. After the formation of deep trench capacitors, an isolation trench is etched into a substrate. The isolation trench is initially filled with a first insulating layer, which is then recessed into the isolation trench to a depth that is lower than the substrate main surface. An epitaxial layer is grown from the exposed sidewalls of the isolation trench. The isolation trench is then filled with a second insulating layer.
摘要:
A novel trench-capacitor DRAM cell structure is disclosed. The trench-capacitor DRAM cell of this invention includes an active area island having a horizontal semiconductor surface and a vertical sidewall contiguous with the horizontal semiconductor surface. A pass transistor is disposed at the corner of the active area island. The pass transistor includes a folded gate conductor strip extending from the horizontal semiconductor surface to the vertical sidewall of the active area island, a source formed in the horizontal semiconductor surface, a drain formed in the vertical sidewall, and a gate oxide layer underneath the folded gate conductor strip. The source and drain define a folded channel. The trench-capacitor DRAM cell further includes a trench capacitor that is insulated from the folded gate conductor strip by a trench top oxide (TTO) layer and is coupled to the pass transistor via the drain.
摘要:
A novel trench-capacitor DRAM cell structure is disclosed. The trench-capacitor DRAM cell of this invention includes an active area island having a horizontal semiconductor surface and a vertical sidewall contiguous with the horizontal semiconductor surface. A pass transistor is disposed at the corner of the active area island. The pass transistor includes a folded gate conductor strip extending from the horizontal semiconductor surface to the vertical sidewall of the active area island, a source formed in the horizontal semiconductor surface, a drain formed in the vertical sidewall, and a gate oxide layer underneath the folded gate conductor strip. The source and drain define a folded channel. The trench-capacitor DRAM cell further includes a trench capacitor that is insulated from the folded gate conductor strip by a trench top oxide (TTO) layer and is coupled to the pass transistor via the drain.
摘要:
The method of positioning a Doppler ultrasound transducer for performing blood flow measurement according to the invention comprises the steps of: detecting a pressure oscillation signal from an inflated cuff placed on patient's artery; detecting an ultrasound pulse signal from the Doppler ultrasound transducer placed along the artery; deriving a first signal from the pressure oscillation signal and the ultrasound pulse signal, the first signal indicating the degree of synchronization between the pressure oscillation signal and the ultrasound pulse signal; and outputting an indication signal to indicate the Doppler ultrasound transducer is in a desired position when the first signal satisfies a predefined condition. Since the synchronization property of the cuff pressure oscillation signal and the ultrasound signal caused by the blood flow is utilized to determine whether the transducer is well positioned or not, ultrasound signal, which is a pulse signal but not reflecting the blood flow of the artery, could be determined as not in synchronization with the oscillation signal and therefore the accuracy of the positioning could be improved.
摘要:
Disclosed is a method for pre-retaining CB opening in a DRAM manufacture process, wherein a CB opening is filed with a photo-resist layer and an LPD oxidation layer that is filled at room temperature to avoid damaging caused by conventional etching techniques. The LPD oxidation layer and the photo-resist are replaced easily by a polysilicon layer and a BPSG layer.
摘要:
This invention relates to a method for self-aligned fabricating an isolation structure of a trench capacitor. The method takes two steps to etch the substrate for forming the shallow trench of the isolation structure, wherein the conductive layer and the collar oxide layer of the trench capacitor remain intact during the etching processes.
摘要:
The present invention provides a method for eliminating inverse narrow width effects in the fabrication of DRAM devices. A semiconductor substrate is provided having thereon a shallow trench. The shallow trench surrounds an active area. A non-doped silicate glass (NSG) layer is deposited to fill the shallow trench, and is then etched back to a depth of the shallow trench, thereby exposing a portion of the semiconductor substrate at an upper portion of the shallow trench. A doped dielectric layer is deposited over the remaining NSG layer to cover the exposed semiconductor substrate. A thermal process is then carried out to diffuse dopants of the doped dielectric layer into the semiconductor substrate, thereby forming a doped region at the periphery of the active area in a channel width direction.
摘要:
A method of fabricating contact holes on a semiconductor chip with a plurality of gates and a first mask layer includes filling a dielectric layer into the inter-gate space of two gates, polishing the dielectric layer until the surface of the dielectric layer is coplanar with the gates, depositing a second mask layer, etching the second mask layer to form a bit line opening in an array area and simultaneously forming a gate opening and a substrate opening in a periphery area, removing a portion of the dielectric layer through the bit line opening and the substrate opening to form a bit line contact hole and a substrate contact hole, filling a metal layer into the bit line contact hole and the substrate contact hole, and etching the first mask layer through the gate opening to form a gate contact hole.