摘要:
A plurality of multi-cavity laser diode chips, each having a plurality of light emitting points, are fixed side by side and form a laser diode array.
摘要:
In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm, generation of organic volatile gas is suppressed in the container and life of the module is prolonged. In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm and whose life is 5500 hours or more, optical components whose organic volatile gas generation measured by GC/MS is 10 μg/g or less at 150° C. are positioned in the container. In addition, as an organic adhesive to fix the optical components such as a collimating lens is used an organic adhesive whose organic volatile gas generation measured by GC/MS is 300 μg/g or less at 15° C.
摘要:
In a disclosed laser module, a usage amount of organic adhesive is set to no more than 1.0 g/ml. Thus, an equilibrium density of outgas components from the adhesive after an air removal treatment is less than 1000 ppm. In another laser module, a heat sink at which a semiconductor laser element is adhered on a submount, an electrode terminal wire-connected with the laser element, a photodiode wire-connected with the electrode terminal, and a zeolite adsorbent are fixedly provided on a stem. These are ring-welded in a container in a dry air atmosphere (80% nitrogen, 20% oxygen). In still another laser module, sixteen multiplexed lasers are disposed in a container. The container is connected with an air circulation apparatus, which is provided with a filter for removing contaminants, a rotary pump for circulating inert gas, and a valve for controlling replenishment of the gas.
摘要:
A laser apparatus includes: a plurality of laser diodes respectively having light-emission points and being fixed to a block so that the light-emission points are aligned along a direction; and a collimator-lens array integrally formed to contain a plurality of collimator lenses which are arranged along a direction and respectively collimate laser beams emitted from the plurality of laser diodes. The block has a lens-setting surface which is flat, perpendicular to optical axes of the plurality of laser diodes, and located on the forward side of the plurality of laser diodes at a predetermined distance from the light-emission points, and the collimator-lens array is fixed to the block so that an end surface of the collimator-lens array is in contact with the lens-setting surface.
摘要:
In a laser apparatus, a plurality of semiconductor laser elements respectively emit laser beams; a multimode optical fiber has a light-entrance end and a light-emission end; an optical condensing system collects the laser beams emitted from the plurality of semiconductor laser elements, and couples the collected laser beams to the light-entrance end of the multimode optical fiber; and a protection member is arranged at the light-emission end of the multimode optical fiber, protects the light-emission end from the atmosphere, and has a light-emission window located at at least a predetermined distance from the light-emission end.
摘要:
In a laser-light source: submounts each being made of a material having a thermal expansion coefficient of 3.5 to 6.0×10−6/° C. and having a thickness of 200 to 400 micrometers are separately formed on a heat-dissipation block made of copper or copper alloy; a single-cavity nitride-based semiconductor laser chips are respectively mounted junction-side-down on the corresponding submounts; an optical condenser system collects laser beams emitted from the semiconductor laser chips, and couples the collected laser beams to a multimode optical fiber. A bonding surface of each semiconductor laser chip is bonded to a bonding surface of a corresponding submount through a metalization layer and an Au—Sn eutectic solder layer each of which is divided into areas.
摘要:
In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm, generation of organic volatile gas is suppressed in the container and life of the module is prolonged. In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm and whose life is 5500 hours or more, optical components whose organic volatile gas generation measured by GC/MS is 10 μg/g or less at 150° C. are positioned in the container. In addition, as an organic adhesive to fix the optical components such as a collimating lens is used an organic adhesive whose organic volatile gas generation measured by GC/MS is 300 μg/g or less at 15° C.
摘要:
In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm, generation of organic volatile gas is suppressed in the container and life of the module is prolonged. In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm, optical components whose organic volatile gas generation measured by GC/MS is 10 μg/g or less at 150° C. are positioned in the container. In addition, as an organic adhesive to fix the optical components such as a collimating lens is used an organic adhesive whose organic volatile gas generation measured by GC/MS is 100 μg/g or less at 150° C.
摘要:
In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm, generation of organic volatile gas is suppressed in the container and life of the module is prolonged. In a laser module comprising a hermetically sealed container having inside a semiconductor laser device whose emission wavelength is 350˜450 nm, optical components whose organic volatile gas generation measured by GC/MS is 10 μg/g or less at 150° C. are positioned in the container. In addition, as an organic adhesive to fix the optical components such as a collimating lens is used an organic adhesive whose organic volatile gas generation measured by GC/MS is 100 μg/g or less at 150° C.
摘要:
An optical wiring substrate fabrication method capable of simple formation, by maskless exposure, of an inclined face shape at an end portion of a core layer structuring an optical waveguide. Using an exposure apparatus, image exposure is carried out with a light beam which is modulated by a spatial modulation element in accordance with image information. A predetermined area of a photosensitive material (a photoresist), which is coated on the core layer which is a material of the optical wiring substrate, is exposed by a light beam (UV) and patterned to form an etching mask. A region corresponding to the inclined face, which is to be formed at the end portion of the core layer, is exposed and patterned by the light beam, exposure amounts of which are controlled in accordance with the inclined form of the inclined face, such that an end portion of the etching mask has an inclined face structure. When the core layer is worked by etching using this etching mask, working of the core layer at the end portion of the core layer progresses in proportion to film thickness of the etching mask, and the inclined face is formed.